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Abstract

The goal of DARPA’s Reading Leaming Comprehension seedling was to determine the
feasibility of autonomous knowledge acquisition through the analysis of text. This report
describes the results of that effort by detailing the capabilities of the TextLearner
prototype, a knowledge-acquisition program that represents the culmination of the year-
long effort. Built atop the Cyc Knowledge Base and implemented almost entirely in the
formal representation language of CycL, TextLearner is an anomaly in the way of Natural
Language Understanding programs. The system operates by generating a an information-
rich model of its target document, and uses that model to explore learning opportunities.
TextLearner uses this model to generate and evaluate hypotheses, not only about the
possible contents of the target document, but about how to interpret unfamiliar natural
language constructions it encounters. Thus TextLearner is able to do two important types
of learning—content extraction and rule acquisition—that establish, the authors would
argue, the value of knowledge acquisition from text as a rich and promising area of
reasoning-based Al research.
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1 Introduction

This report describes the efforts and results of the Reading Learning Comprehension
DARPA/IPTO seedling, contract number HR0011-05-C-0075. The structure of the
report is as follows: First, the reader is given a summary of Reading Learning
Comprehension’s goals, followed by a description of the main technical challenges that
had to be met to achieve those goals. The report then describes the methodology behind
and the architecture, components, and capabilities of the TextL.eamer system, the product
of this effort. Next, the report describes two experiments designed to test the general
utility and promise of a deployed TextLearner, the results of one of which have been
described in a recent publication. Following this, the report summarizes the most
signification developments from the Reading Learning Comprehension effort. The report
ends with a discussion of future research ideas.

2  Task Objective

2.1 Overview

The Reading Learning Comprehension seedling can be viewed as a natural step in the
development of knowledge-acquisition methods for large knowledge-based systems.
Where the High Performance Knowledge Base (HPKB) project established the value of
systems built largely through the manual efforts of trained ontologists, and the
subsequent Rapid Knowledge Formation (RKF) project showed that domain experts
without a background in ontology could extend a knowledge-base through limited
“mixed initiative” dialogue and special-purpose knowledge entry tools, the Reading
Learning Comprehension seedling sought to establish the feasibility of an automatic
method of knowledge acquisition from and about natural language. The TextLearner
prototype, which implements many of the algorithms described in this report, represents a
model of learning that distinguishes this effort from most research on learning performed
over the past two decades, such as function approximation, reinforcement learning, and
Markov model learning, which has focused on statistics-based learning of sequences and
patterns.

In describing the TextLearner system, it is important to distinguish the task of building a
program that learns through the analysis of text from the broader task of building
software that can read—a problem perhaps as difficult as, if not identical to, the problem
of building an Artificial Intelligence. Nevertheless, the approach taken to textual analysis
inside TextLearner approximates important features of reading. Foremost of these is the
ability to defer resolution of ambiguous words and phrases, and thus “move through” a
text, using later information to resolve earlier uncertainties. Towards this end,
TextLearner generates an information-rich model of the target text, including a
declarative, formal representation of tokenizations, linkages, and parse trees, and stores
this representation in a knowledge base primed with thousands of commonsense concepts
and rules. This environment—a reified model of context against a backdrop of common

.
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sense—enables TextLearner to generate multiple competing hypotheses about the
meanings of words, phrases, and sentences, and to reason about their respective merits.
This level of context-modeling also enables TextLearner to approximate another
important, if less recognized, feature of reading: the use of context to learn rules that
facilitate and improve the process of learning from text. Though it is evident that humans
are able to improve both their reading comprehension and writing skills by reading, a
precise model of how humans manage this feat was not required to make advances in this
area. Rather, familiarity with the core natural language understanding (NLU) capabilities
of existing software allowed us to identify small classes of rules that were both tractable
to learn and capable of yielding results. The context-modeling and analysis that define
the TextLearner system thus enabled us to pursue two important learning objectives
simultaneously: content extraction, or learning what information a document contains;
and rule acquisition, the learing of rules that, once added to the system, make it a better
learner. Each objective is discussed in tum.

2.2 Content Extraction: The “Reading Learning” Problem

The objective of extracting content from text decomposes into three sub-objectives, each
of which is described in its own sub-section:

e Formalization of Propositional Content, the objective of producing a record of
the propositional content of a document, encoded as sentences of a formal
representation language;

e Semantic annotation, the objective of producing record of what a document is
about, by encoding a (weighted) mapping of string-occurrences into terms of a
formal language;

e Extracted presuppositions, the objective of producing a formalized record of
content, not explicitly declared in a document, but presupposed by word choice,
sentence structure and conventions of interpretation

2.2.1 Formalization of Propositional Content

One obvious goal for a natural language understanding technology such as TextLearner is
the production of a formal translation of the target text. However, in designing
TextLearner, it was determined that this goal was both too unrealistic and (perhaps more
importantly) too narrow to serve as the system’s sole objective. That this goal is
unrealistic is due in part to the inherent difficulty of the problem: despite the fact that
many syntactic parsers work reliably, formal languages are typically optimized toward
compactness of representation and suitability for inference. As a result, the formal
“target” language will often have little in the way of a predictable isomorphism with the
structures produced by syntactic parsers. Exacerbating this difficulty was the design
decision to do without restrictions in the way of domain, vocabulary, or grammar in the
texts to be processed. Restricting any or all of these would increase the prospects of
writing a fairly precise semantic translation program; however, as a test of the feasibility
of a general Al program that leams from and about text, such restrictions would serve to
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“game” the outcome in an unhelpful way. After all, in “real world” articles, documents,
and conversations—all fair game for sources of text—domains and topics shift rapidly,
words are coined and senses change. Success in cases where these elements are fixed and
known to the system beforehand thus renders dubious the extensibility of the algorithms
employed. The prevailing view among TextLearner’s developers was that while a
semantic translation would be one target of the system’s text analysis, it would not be the
only one, nor even the focal one. Of more interest would be whether we could learn rules
or facts that would improve or increase the system’s ability to produce such
interpretations—something that will be discussed below, in section 2.2.

As noted above, focusing on a semantic translation of the target text is not only
unrealistic, but also unnecessarily narrow. There are two reasons for this. First, as
evidenced by widespread interest in semantic annotation of documents,’ there is value to
be had in gleaning merely what a sentence is about, even where this “aboutness” is cast
in a quasi-Fregean light, under which a sentence is about every thing referred to by any of
its constituents’? Notably, textual annotation of this sort can be achieved without
understanding the propositional content of a sentence. The second reason to view
sentence-by-sentence formalization as too narrow an objective is that sentences convey
extra-propositional content—in particular, presuppositions—that will be absent from a
formalization of the propositional content. The outputs of a program that extracts content
will thus be information poor in certain respects, if it were capable of producing only a
sentence-by-sentence formalization of propositional content. Let us examine each of
these points more closely.

2.2.2 Semantic Annotation

Above, it was noted that the vocabulary comprising a formal representation language is
typically designed so as to maximize inferential utility. Often, this means that a given
phrase of natural language might have a “target” translation into a representation
language that, while efficient for inference, makes a general algorithm for translating
natural language sentences difficult to extract. For example using a special-purpose
predicate such as highestVolcanoInThisArea to represent “Etna is the tallest volcano

' Notable among the “hot” topics in this area is the nearly globally embraced “semantic web” movement,
which has among its aims the annotation of virtually all electronic documents accessible through the
internet. See http://annotation.semanticweb.org/.

2 See, for example, Frege’s “building blocks” analogy on pg. 243 of Nachgelasene Schriften, ed. H.
Hermes, F Kambartel and F. Kalubach, Hamburg, 1969. Frege’s view more naturally pertains, not to
natural language categories of constituents, such as subject and predicate, but to “constituents” as they
would be distinguished in a logical notation. So on the view described here, “F(a)” is equally about the
function denoted by “F()” as it is about the concept denoted by ““a.” The relevance of Frege’s view here
rests in its similarity to the view of semantic annotation implemented as a term-by-term, phrase-by-phrase
mapping into a logical formalism, where each denotation of each term of the formalism thereby stakes an
equal claim to being something that the sentence is about.

¥ This predicate actually exists as part of the CycL vocabulary, primarily to serve as an example of both 1)
how not to represent knowledge typically, and 2) what one can do, if inflexible inferential/representational
requirements are imposed (i.e., one’s hands aren’t tied by virtue of using Cycl. as the representation
language).




Reading Learning o
Comprehension (l-v

Final Report

June 2006 cYco rp

in all of Europe”— (highestVolcanoInThisArea ContinentOfEurope MountEtna-
Volcano) —might make reasoning about Mt Etna’s geospatial location relative to Earth’s
continents very efficient,’ but it makes for a poor model on which to translate English
sentences of the form, NOUNPHRASE-! is the tallest NOUN in NOUNPHRASE-2. 1t is
an even poorer model for NOUNPHRASE-1 is the SUPERLATIVE NOUN in
NOUNPHRASE-2, and downright useless for NOUNPHRASE-1 is NOUNPHRASE-2,
despite the fact that the original sentence instantiates all three patterns.

Though the particular example selected here might be more illustrative of the problem
than would an example selected at random, the general point nevertheless holds: Without
artificial constraints on domain, vocabulary, or grammar, it is highly improbable that one
can reliably generate a formalized translation of an arbitrary “legal” natural language
sentence by compositional means—i.e., by virtue of having mapped each natural
language constituent into a corresponding term in the formalism.”> However, that does
not mean that performing such a mapping is an exercise in futility. Quite the contrary, if
such a mapping can be performed automatically, and ambiguities at the NL level can be
resolved mostly correctly (again, automatically), the result is a method of automated
semantic annotation of documents—a major gain for an NLP community focused on
problems such as Information Retrieval (IR—finding a document based on how its
content aligns with the entities mentioned in the user’s query) and questionranswering
(traditionally, “fine-grained IR”—retrieving passages, as small as a sentence or phrase,
that, due to their semantic properties, appear to answer the user’s question).

Given the richness of the ontology in which this semantic representation would be
embedded, the prospects for using TextLearner to generate a qualitatively superior brand
of annotation appeared promising (and still do). For example, given a document
annotation that correctly maps an occurrence of the string “tank” to Tank-vehicle as
opposed to LiquidstorageTank, one would be able to retrieve the document with search
strings that, in addition to “tanks,” included non-synonymous, non-hypernymous, and
non-hyponymous strings such as “military,” “track,” “armor,” and “battle,” given the
tight semantic relationships among Tank-vehicle and the terms corresponding to the
English words in the target ontology (the Cyc ontology). Given the potential high-

% Indeed it does. This very sentence is asserted in Cyc. Because of special purpose reasoning modules
designed to support transitivity, Cyc knows that to be the tallest volcano in an area is to be geographically
subsumed by that area via the relationship (genlPreds highestVolcanoInArea
geographicalsubRegions). Cyc can thus prove (geographicalSubRegions ContinentOfEurope
MountEtna-Volcano) without having to transform the problem in a way that triggers other applicable
rules.

5 One can increase one’s chances by including “intermediate,” or “throw-away” vocabulary in the
formalism (such as “referentless” terms for things like determiners and pronouns) that serves to replicate
the syntax of the target natural language. Attempts to facilitate NLP by using such vocabulary at Cycorp
have met with some success (see Panton, ef a/, “Knowledge Formation and Dialogue using the KRAKEN
toolset, in Proceedings of the Eighteenth National Conference on Artificial Intelligence and Fourteenth
Conference on Innovative Applications of Artifical Intelligence, pp. 900-905, Edmonton, Canada, July 28-
August 1, 2002). The need to resort to this sort of “throwaway” vocabulary is obviated in the TextLearner
system by virtue of the richness of the context model it maintains.

-6-



Reading Learning (b\
Comprehension

Final Report

June 2006 cYco rp

payoff and low-risk involved, the scope of the Reading Learning Comprehension
objective was extended to move beyond formalized translation and into semantic
annotation.

2.2.3 Presupposition

As noted above, a second reason to expand the objectives of TextLearner’s content
extraction capabilities has to do with the possibility of grasping the “low-hanging” fruit
in the area of presupposition. Consider the following pair of two sentence paragraphs:

e “Angola is in Africa. It is a country with a democratic form of government.”
e “Angolais in Africa. The country has a democratic form of government.”

For each paragraph, a suitable formalization of the first sentence (using mock CycL)
might be something as straightforward as,

(inRegion Angola ContinentOfAfrica)

Translating the second sentence correctly in each case requires a bit more sophistication.
Both sentences contain anaphoric expressions—noun phrases whose meanings are
determined by the denotations of expressions that occur earlier (their antecedents). Let us
suppose a system for translating NL to a formal representation correctly identifies
“Angola,” and not “Africa,” as the antecedent for “It” in the first paragraph. Such a
system would then be in a position to correctly assign “It” the same semantics it assigned
to “Angola” in the first sentence. We might imagine a target representation of the second
sentence to thus be

(and
(isa Angola Country)
(formOfGovernment Angola Democracy-FormOfGovernment))

The conjunction of this sentence with (inRegion Angola ContinentOfAfrica)
arguably provides a formal representation of the propositional content of the first of the
our two paragraphs.

However, when we attempt to translate the second sentence of the second paragraph,
things become tricky. Of interest here is the question of what the anaphoric expression
“The country” refers back to. Let us suppose the system that handled “It” correctly in the
first paragraph correctly identifies “Angola” as the antecedent of “The country” in the
second paragraph. As before, this system would be in a position to correctly assign “The
country” the same semantics it assigned to “Angola,” having established co-reference.
This yields a semantic translation,

(formOfGovernment Angola Democracy-FormOfGovernment)

tor the second sentence, which, conjoined with the first, arguably provides a formal
translation of the second paragraph. However, there is an important bit of content

==
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provided by both paragraphs, and reflected only in the translation of the first, that is
conspicuously absent—namely, that Angola is a country. The fact that Angola is a
country is not a claim put forth by either sentence of the second paragraph; rather,
conventions for resolving co-reference for “familiar” noun phrases allow one to derive
content presupposed in the paragraph as a whole: Angola is, in fact, a country; otherwise
the author wouldn’t have used “The country” to refer to it.

Like many natural language phenomena, presuppositions are ubiquitous and subtle, and
worthy of a dedicated research program. However, given the time and funding
constraints of the Reading Learning Comprehension seedling, it was decided that the
scope of presupposition-extraction would be limited to “low-hanging fruit”—in particular
to cases of anaphora resolution, including pronouns (such as “he,” the use of which
presuppose the gender of the denotations of their antecedents) and certain classes of
appositives (e.g., “the sculptor Michelangelo™) that serve to classify an object without
conveying that classification declaratively.

2.3 Rule Acquisition: The “Learning Reading” Problem

Though content extraction might be the most recognized and natural objective for
systems that implement NLU techniques, an early objective of TextLearner has been that
it learn “increasingly autonomously” ® from text. This means that not only should
TextLearner perform some level of content extraction, it should learn in a way that makes
it do a better job of learning from text over time. Specifically, this entails finding ways to
learn rules that help the system handle new linguistic phenomena.

A handful of high-payoff areas for rule acquisition were identified:

e Rules for interpreting noun compounds: Having generated hypotheses about
what the head and modifier of an identified noun compound could mean, the
system should generate rules explaining the compound—i.e, rules that extend the
semantic relationship between the head and modifier semantics (e.g., the
semantics of “rain” and ‘“coat”) to explain the meaning of the compound.in
context (e.g., “rain coat” denotes a type of coat that guards against (as coats are
wont to do) rain,

e Rules for interpreting new verb phrases. Current mechanisms for translating
verb phrases into CycL rely on semantic translation templates. Coverage in this
area is substantially incomplete. The system should, when enough information is
given in the context model, propose new templates that enable some level of
formalization.  As will be discussed, productive techniques have been
implemented in TextLearner that generate semantic translation templates for
verbs that lack templates, as well as extensions for verbs with limited template
information when verb phrases with prepositional complements are encountered.

® Witbrock, M. and Schneider, D., “Reading - Learning — Comprehension” DARPA proposal, 9/23/2004

e
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e Rules (templates) to enable Example-Based Machine Translation (EBMT).
EBMT is the process of deriving translation based on examples.” Though this
technology has been used primarily to translate between natural language
sentences, some promise has been shown in the area of applying these techniques
to effect NL-to-CycL translations®, despite obvious issues with respect to the use
of natural language devices such as metaphor and pronouns that do not (typically)
correspond to elements of a formal representation language.

The details behind each rule acquisition method are covered in the “General
Methodology” section below (Section 4).

3 Technical Problems

Though some of the technical challenges that arose in the development of the
TextLearner system are common to any software engineering project—e.g., ensuring
reliable access to external programs or databases—some of the more interesting
challenges are unique to large-scale knowledge-based Al programming. This section
describes two such challenges and our responses to them.

3.1 Implementing Procedures in a Declarative System

By design, the bulk of the “code” responsible for guiding TextLearner’s behavior is
encoded directly into the Cyc KB as CycL rule-assertions that operate in a forward
(aggressive), as opposed to backward (when called upon) direction: As information is
added to the KB, the various rules that comprise TextLearner knowledge-acquisition
components are triggered, resulting in a subsequent round of information being added,
and the subsequent triggering of state-changing rules, until a state of quiescence is
reached. In such an environment, it is difficult to control the order in which particular
rules are triggered, which can be problematic when the addition of information at a later
stage is sufficient to invalidate a rule-application that was executed at an earlier stage.
This is a version of the age-old problem of elaboration tolerance,” which the developers
of TextLearmer combated mostly successfully by combining non-monotonic features of
the Cyc representation language with a more novel mechanism for reconsidering and
revising KB content.

3.1.1 Non-monotonicity

Cyc has long had non-monotonic reasoning capabilities, the most mature of which is its
ability to store meta-rules about rule applicability in its knowledge base. For example,
the Cyc KB contains the following rule:

3 See, for example, http.//www-2.cs.cmu.edu/afs/cs.cmu.edu/user/ralf/pub/WWW/ebmt/ebmt.html, Ralf
Brown’s research page.

¥ See Bertolo, et al, Quirk Final Report.

’ McCarthy, J. “Elaboration Tolerance,” Proceedings of the Fourth Symposium on Logical Formalizations
of Common Sense Reasoning, London, Janary 1998.

8-
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(not

(and
(isa ?ANIMAL Mammal)
(genls ?ABILITY Flying-FlappingWings)
(physicallyCapableOf ?ANIMAL ?ABILITY doneBy)))

which says that for every mammal ANIMAL, it’s not the case that there is a kind of flying
that ANIMAL is physically capable of. Thus if Cyc were to learn of a new object,
Mammal- 0135, for which all was known that

(isa Mammal-0135 Mammal)

Cyc would be able to prove that Mammal-0135 cannot use its wings to fly. l.e., it can use
the above rule to prove,

{not
(physicallyCapableOf Mammal-0135 Flying-FlappingWings doneBy))

However, if Cyc then learns that Mammal-0135 is not merely a mammal, but a bat,

(isa Mammal-0135 Bat-Mammal)

we would not want Cyc to be able to prove what it could when it knew only that Mamma1 -
0135 was a mammal. The rule, as written, still clearly applies; but there is a meta-rule
about this very rule’s conditions of applicability, namely:

(exceptWhen
(isa ?ANIMAL Bat-Mammal)
(not
(and
(isa ?ANIMAL Mammal)
(genls ?ABILITY Flying-FlappingWings)
(physicallyCapableOf ?ANIMAL ?ABILITY doneBy))))

This rule says that the “mammals can’t fly” rule applies to all mammals and all types of
self-powered, “wing-driven” flying, except when the mammal in question is a bat, in
which case it doesn’t apply at all.

The ability to state exceptions in CycL is crucial in handling changes in the knowledge
base, particularly where TextLearner is concerned. For example, after the first sentence
of a document has been processed, the supporting evidence might weigh in favor of one
interpretation of an ambiguous word or phrase. But after the full paragraph has been
considered, the evidence might weigh in favor of a rival interpretation. The ability to
state exceptions thus helps guard the system against committing to a hypothesis too early.

3.1.2 Selective Truth Maintenance

Unfortunately, the use of exception rules, though necessary to make TextLearner
elaboration tolerant, is not sufficient. As noted above, many TextLearner components are

-10-
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implemented as sets of forward rules, so that their dependents are derived and added to
the Knowledge Base as soon as the antecedent conditions of the rule are met. This
reintroduces elaboration tolerance all over again for forward inference, which can be
illustrated by extending the example, described above, in which Mamma1-0135 is known
to be an instance of Mmammal at time ¢, and only later known to be an instance of Bat-
Mammal at a later time, ¢2. If, at time ¢, the rule stating that mammals cannot fly were
forward, the system would forward derive

(not
(physicallyCapableOf Mammal-0135 Flying-FlappingWings doneBy))

at that moment. The later, ¢2, claim, that (isa Mammal-0135 Bat-Mammal), iS not
sufficient to retract the deduction, as it is merely a claim, like any other, that might or
might not be consistent with what the system already takes to be true. If, for example, the
KB contains the additional knowledge that all bats can fly, the £2 claim is, like (isa
Mammal-0135 Computer), a claim whose addition to the knowledge base would create an
inconsistent state. Indeed, if the inconsistency can be detected immediately by the
system,'” the claim might be rejected altogether.

The general mechanism for handling these sorts of inconsistencies is a Truth
Maintenance program, designed to investigate derivations of forward rules, and
reconsider their supports. However, this program is typically run only at compile time,
and not with the addition of every assertion, which, given the size of the Cyc KB, would
be prohibitively expensive.

However, this creates a conundrum for TextLearner, which relies heavily on forward
inference and a consistent stream of new data that will trigger forward inference, in many
cases prematurely (i.e., before all the information is “in”). The solution decided upon
was to implement selective truth maintenance in TextLearner, using a piece of procedural
vocabulary—a unary predicate reconsiderAssertionDeductions—and forward rules
concluding to it. Areas where elaboration tolerance were likely to break down were
identified, and then forward rules were added that looked for possible inconsistencies.
These rules, when successfully triggered, derived a command to the Truth Maintenance
code to investigate and repair as needed.

It would be beneficial to consider an example from one area where selective truth
maintenance proved useful to TextLeamer. Resolving anaphora, cases of pronouns or
definite noun phrases whose meaning depends on the meaning of other, earlier
expressions (their antecedents) that these phrases refer-back to.

' Cyc’s agenda control process does some degree of semantic well-formedness-checking, which includes
checking to see whether proposed assertions are easily disproved (via, example, simple graph-walking of
the type hierarchy). For example, given that Cyc knows in its microtheory (context) of people data
(PeopleDataMt) that Hu Jintao is a human being ((isa HuJdintao HomoSapiens)), the agenda control
would block the addition of (isa HuJintao Automobile) to any part of the KB where the contents of
PeopleDataMt are accessible.
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For example, consider the following rule that serves to identify situations where there is
exactly one possible antecedent for an anaphoric expression:

(implies
(and
(contextuallyPossibleAntecedent ?ANA ?ANTE)
(extentCardinality
(TheSetOf ?ANTES
(contextuallyPossibleAntecedent ?ANA ?ANTES)) 1))
(onlyPossibleAntecedent ?ANA ?ANTE) )

This CycL expresses the rule: ANTE is the only possible antecedent for the anaphoric
expression ANA, if 1) ANTE is, in fact, a possible antecedent for ANA and 2) there is
exactly one such possible antecedent. When used backward in inference against a fully-
specified model of the target text, this rule works as intended: Under such conditions, the
number of possible antecedents has been fixed prior to the application of the rule.
Unfortunately, in a system such as TextLearner, where rules such as this are run forward
and so can be triggered multiple times as the model is constructed, the rule is certain to
generate dependents at time t that will prove false at some later time t’. Indeed, this rule
will be satisfied as soon as the first possible antecedent for ANA is identified: As
TextLearner’s analysis of a document proceeds, there will be a time, however brief,
where Textlearner has encountered, for the first time, a possible value for ANTE, and has
yet to discover any others. [f others are discovered, the discoveries will come too late to
block the deduction: the very first value for ANTE has successfully triggered the rule,
resulting in the addition of (onlyPossibleAntecedent ANA ANTE) as a derived
assertion to TextLearner’s model of the document.

To combat this, a selective truth maintenance rule was added:

(implies
(and
(assertionSentence ?ASSERTION
(onlyPossibleAntecedent ?ANA ?ANTE-1))
(contextuallyPossibleAntecedent ?ANA ?ANTE-2)
(different ?ANTE-1 ?ANTE-2))
(reconsiderAssertionDeductions ?ASSERTION))

This rule will be triggered anytime a sentence of the form

(contextuallyPossibleAntecedent ANA ANTE)

is added to TextlLearner’s model, guaranteeing that all and only those dervied
onlyPossibleAntencedent assertions that should survive the document-analysis
process do survive.
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3.2 Performance

Though forward inference has been utilized heavily in other Cyc-based projects'' no
project has exercised Cyc’s forward inference capabilities to the degree that the Reading
Learning Comprehension project has. This section describes two areas where this
reliance on forward inference posed a significant technical challenge.

3.2.1 Reification Templates

The heavy reliance on forward inference in TextLearner—that is, the use of rules that
actively derive conclusions when information meeting their antecedent conditions are
added to the knowledge base—combined with the huge amount of data over which
reasoning is done, resulted in slow performance. As a fully automated learning program,
the performance, or speed of TextLearner would not ordinarily matter. However, early
on in the project, slowness became a development obstacle, as it became prohibitively
expensive to run regression tests or to test patches.

An important step taken to address the problem was to restrict which rules could fired
during TextLearner’s text analysis. This was accomplished through the use of templates
that specified patterns for restricting the use of rules in forward inference. Prior to the
Reading Learning Comprehension project, such templates would specify “legal” forward
rules on an explicit rule-by-rule basis. However, given the vast number of forward rules
needed to implement TextLearner, a rule-by-rule approach was too unwieldy. A simple
solution, a new binary predicate, creationTemplateAllowsAllRulesFromMt that could
be used to associate a template with a microtheory, allowed all rules asserted in that
microtheory to be “legal.” Text learner’s extensive use of these templates is
unprecedented; indeed, it is the only Cyc-based software program that has complete
control over how and when forward inference is executed.

3.2.2 Using a “Balanced” Tactician

For many years, Cyc had separate solution-identifying algorithms, known as tacticians,
for the inference engine to use depending on whether it was solving a problem during
backward or forward inference. The reason for this was primarily one of performance:
The more sophisticated, “balanced” tactician used in backward inference worked much
more slowly than the simpler, “depth-first” tactician used in forward inference.
However, the simpler tactician is prone to error, and as TextLearner increasingly relied
on forward inference, these errors emerged ever more frequently, eventually blocking
TextLearner from performing certain fundamental tasks.

It thus became necessary for TextLearner to switch to the balanced tactician, initially
increasing the time spent in forward inference, already the bulk of TextLearner’s total

"' Most notably in the Vulcan-sponsored Halo project and the commercial MySentient Answers system,
described respectively in Friedland, er a/, “Project Halo: Towards a Digital Aristotle,” Al Magazine 25(4)
pp. 29-48, Winter 2004, and in Curtis, et al, “On the Effective Use of Cyc in a Question Answering
System,” in KRAQ 2005 Proceedings, Edinburgh, Scotland: 2005.
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time, by 300%. The Cyc inference team then ran several experiments, using TextLearner
use-cases to establish baselines, enabling them to identify and repair several causes of
slowness. The most dramatic of these repairs involved a new kind of inference heuristic,

so-called “preference modules,” that facilitate more correct and efficient meta-reasoning
about the completeness and productivity of certain classes of problems.

As a result of these efforts, the balanced tactician now operates more efficiently than the

depth-first tactician used to. The depth-first tactician has since been discarded, meaning
that all users of forward inference in Cyc now benefit from these changes.

4 General Methodology

4.1 The Reading Learning Comprehension Process Overview

At its most general level of description, the TextLeamer system executes a threestage
script for analyzing and learning from text. This script is illustrated in Figure 1:

content
; - I
extraction di;ﬁ'gtﬁn/
context
e knowledge

acquisition

Figure 1: TextLearner’s three stage
process of acquiring knowledge from text.

KB distribution

Each stage in the process is described in detail below.
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4.2 Context Modeling

4.2.1 Representing Document Structure

A number of distinctions in the Cyc ontology are relevant in an explanation of
TextLearner’s approach to modeling the structure of documents. The most intuitive of
these is a distinction between an authored work, such as a musical score, a screenplay, or
an op-ed piece, and its spatio-temporal instantiations—musical broadcasts, theatrical
performances, newspaper clippings and the like—by which humans experience the
contents of the work. English contains many words that can be used to refer to either a
work or a work-instantiation, such as “book,” “document,” “paper,” ‘“article,” and
“movie.” However Cycl captures the distinction unambiguously by having distinct
terms corresponding to the two kinds of senses. The Cyc term
PropositionalConceptualWork is meant to denote the class of abstract works that
convey propositional (truth-evaluable) content, and so has specializations, such as Book -
cw, that are useful in representing that the “work” sense of “book” is at play in the
sentence “I’ve read all of Stephen Hawking’s books.” In  contrast,
InformationBearingThing represents the collection of all objects and events that carry
information. Under this collection one finds terms such as Bookcopy, useful for
representing and understanding “instantiation” uses of “book,” as in “I lost Stephen’s
book in the scuffle.”

kN Y9

In Cyc’s ontology, works and their instantiations are related, definitionally, to the notion
of a shared information structure, so that something counts as an instantiation of a work
if, and only if, it instantiates the structure of that work. This is encoded in CycL as,

(implies
(and
(instantiationOfWork ?COPY ?WORK)
(correspondingAIS ?WORK ?STRUCTURE) )
{instantiationOfAIS ?COPY ?STRUCTURE))

(implies
(and
(instantiationOfAIS ?COPY ?STRUCTURE)
(correspondingAIS ?WORK ?STRUCTURE) )
(instantiationOfWork ?COPY ?WORK))

At the most general level of description, the TextLeamer procedure for analyzing text
involves identifying an instance of PropositionalConceptualWork, and reasoning
about its information structure, i.e., the instance of AbstractInformationStructure
that is its correspondingais, which, for textual works, is typically a string of characters.
In short, if a document D has as its structure a string S, one fully can understand “the
propositional content” of D by successfully interpreting S. Though this is a fairly
innocuous view to hold at the level of whole documents, it is misleadingly dangerous
when extended to smaller parts of documents, such as individual sentences, phrases or
words, the meanings of which change, depending on the surrounding context supplied by
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the document. Thus to talk of “the meaning” or “the right interpretation” of a string is
misleading: A given string (e.g., “he”) does not carry with it an inherent “right” meaning;

rather it is a contextualized structure—an occurrence of a string within a larger
structure—that can be said to have a meaning.'?

The concept of a contextualized information structure was, in the earlier weeks of the
Reading Learning Comprehension project, not explicitly represented, and only (poorly)
hinted at in the Cyc ontology, indirectly through analogous type/token distinction for
instances of InformationBearingThing. Thus the collection-term
ContextualizedInformationstructure was reified and added to the Cyc KB. It is
possible for there to be many sub-classes of contextualized information structure;
however, TextLearner is only concerned with the contextualized words, phrases, and
sentences, for which the CycL term LinguisticExpressionpPeg was used. Throughout
this report, “expression peg” is used to describe contextualized information structures of
this type.

TextLearner uses a canonical method of representing the propositional content of a
document or other target text in Cyc: It introduces, or reifies, a CycL term for the
document in the “abstract work” sense of the document, and a microtheory where CycL
representations of the claims forwarded in that work can be asserted. Given a CycL term
for the document, such as chemistry-wikipediaarticle for the Wikipedia article
“Chemistry,” the assertion,

(contextOfPCW Chemistry-WikipediaArticle
(ContextOfPCWFn Chemistry-WikipediaArticle))

identifies (ContextOfPCWFn Chemistry-WikipediaArticle) as the microtheory
where the “Chemistry” article’s propositional content, if understood, would be
represented. As TextLearner recognizes a distinction between the propositional and
presupposed content of a document, it further reifies a microtheory for storing
presupposed content:

(presuppositionsMtOfPCW
(PresuppotsitionsMtOfPCWF Chemistry-WikipediaArticle)
Chemistry-WikipediaArticle)

12 | est there be confusion on this point, the abstract information structure/contextualized information
structure distinction and the type/token distinction, though analogous, are not identical. On this very page,
“x”" and “x”" are two distinct tokens of the same type, and their relative spatial location, combined with the
fact that they instantiate the same abstract information structure (the same string) is sufficient to conclude
that there are two distinct contextualized information structures (two distinct occurrences of the same
string) within the structure of this page. However, that does not mean that the tokens are the same thing as
the contextualized structures. if one makes a photocopy of this page, one will have succeeded in generating
two more distinct tokens of the same type. But just as all four tokens instantiate a single abstract
information structure (the same string), each pair of tokens merely serves as a physical reminder that there
are two contextualized information structures (two occurrences of that single string) within the single
shared structure that both copies of this page instantiate. That there is a second pair of tokens, however,
does not suggest that there is a second pair of contexualized information structures.
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However, to arrive at any sort of representation of a document’s content, TextLearner
must analyze the structure of the document. To this end, it reifies an information
structure functionally, using the functor AzsForrn such that for the “Chemistry” article,

(correspondingAIS Chemistry-WikipediaArticle
(AISForFn Chemistry-WikipediaArticle))

identifies (AISForFn Chemistry-wikipediaArticle) as the term denoting the actual
abstract information structure of the Chemistry article—i.e., the very structure shared by
all physical printings that all its physical copies must instantiate. At the same time, it
reifies a “workspace” for analyzing this structure, this time applying another
microtheory-denoting function:

(interpretationWorkspaceMtForDocument
(InterpretingDocumentMtFn Chemistry-WikipediaArticle)
Chemistry-WikipediaArticle)

Together, these structures form a microtheory hierarchy via transitive content-accesibility
relation, genlMt. (genlMt CONTEXT-1 CONTEXT-2) means that every fact in the KB that
is accessible in CONTEXT- 2 1s also accessible to conTExT-1. The workspace microtheory,
where information about the structure of the “Chemistry” article is stored, is at the
bottom of the hierarchy, having a geniMt link up to (ContextOfPCWFn Chemistry-
wikipediaArticle), the context for representing the (finalized) interpretation of the
article. That, in turn has a gen1Mt link up to the presuppositions Microtheory, which then
connects to Cyc’s commonsense layer with select genlMt links to various world
knowledge microtheories. The workspace, however, hooks in to the Cyc KB at a second
point, not accessible to the others: It stands in a genimt link to Cyc’s lexicon for
English—a set of microtheories that contain information about English words, such their
parts of speech, morphology, and semantics, including “denotation” mappings to CycL
constants and rules for translating phrasal constructions into CycL formulae.

As part of this information structure, we have extended the CycL vocabulary for
representing documents, microtheories (contexts), document-structure, and textual
mentions (e.g., the third sentence of a document, the fourth occurrence of the word
“nice,”), resulting in a representational framework that will support the processing of
documents and subsequent reasoning about their content. As a small example of this
infrastructure, we have implemented a method, in forward inference, for resolving
relative URLs to absolute URLs; this enables use of hyperlinks on unknown words or
names to automatically retrieve documents that will be helpful in learning their
meanings.

Once TextLearner has the structure of a document fully represented, it begins processing
the first paragraph, sentence by sentence, in the order in which the sentences appear.
Almost all of the work TextLearner does is at the level of individual sentences; however,
the model for each sentence is maintained after its completion, so that the analysis of
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each new sentence can benefit from what was leamned during the analysis of earlier
sentences (and, conversely, so that the system can reassess some of its judgments about
the content of earlier sentences in light of what is discovered about later sentences).

The first step in the sentence-analysis process is to reify a sentence-level “expression
peg,”13 which represents the occurrence of the sentence-string in the target paragraph of
the selected document. In the current implementation of TextLearner, sentences are
introduced through “create” operations that generate a CycL constant for the sentence-
level peg. At this point, some of its defining properties are declared in the knowledge
base as well. An example sentence-level peg, at this early stage, might thus have this sort
of relatively bare representation, identifying it as a structure of the relevant type, and

giving its relative location within paragrapho2, and its original html source string:

Constant. L2rR-SentenceLevelPeg-1

isa: LinguisticExpressionPeg-CompleteUtterance TextStringOccurrence.
nthOccurrenceOfStructureTypeInStructure: (1 NLSentence Paragraph02).

asHtmlSourceString: “Ghandi followed a <a href=”/wiki/Vegetarian”
title=Vegetarian”vegetarian</a> diet.”.

A context model—the microtheory where almost all of TextLearner’s reasoning about
L2R-SentenceLevelPeg-1 takes place—is then generated functionally, by applying the
unary CycL functor contentModelForPegFn to this new constant. Through forward
inference, the resultant microtheory is placed “beneath” the workspace microtheory for
the document via gen1Mt, allowing it access to all the content currently accessible from
the workspace microtheory.

4.2.2 Tokenizations, Linkages, and Parse Trees

With the reification of a sentence-level peg and the placement of its context model in the
genIMt hierarchy, TextLearner is ready to subject the sentence to syntactic analysis. To
this end, TextLeamer calls the free Link Parser (http://www.link.cs.cmu.edwlink/), a
highly lexicalized, statistically ranked parser for English that produces 1) a tokenization
of the input sentence, 2) a linkage, a graphical structure the connects tokens with
syntactically and, to some degree, semantically significant links between individual
tokens in the tokenization; and 3) a parse tree, the structure of which follows directly
from the linkage.

" The use of the word “peg” here reflects a similar (but not identical) usage in the works of Bonnie Webber
and others, who use “pegs” as objects from which to hang ever-increasing amounts of data as a discourse
model is developed. See Webber, 4 Formal Approach to Discourse Anaphora, Doctoral Dissertation,
Division of Applied Mathematics, Harvard University, 1978.
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9 (linkFromTolnSystem
(Link GrammarLinkFn "G") Link CycParsingToken- 180
LinkCycParsingToken-79
{(NthLinkParserLinkageFn "Angola 1s a country in Southwestern Africa.” 0))
@ (inkFromToInSystem
(Link GrammarlLinkFn "Js") LinkCycParsingToken-89
LinkCycParsingToken-79
(NihLinkParserLinkageFn "Angola 1s a country in Southwestern Afnica.” 0))
@ (inkFromTolnSystem
(Link GrammarLinkFn "Ds") Link CycParsingToken-5 Link CycParsingToken- 1
(NthLinkParserLinkageFn "Angola is a country in Southwestern Africa " 0))
@ (inkFromTolnSystem
(Link GrammarLinkFn "Ost") Link CycParsingToken-68
LinkCycParsingToken-1
(NthLinkParserLinkageFn "Angola is a country in Southwestern Afnica. " 0))
@ (inkFromTolnSystem
(Link GrammarLinkFn "MVp") LinkCycParsingToken-68
LinkCycParsingToken-389
(NthLinkParserLinkageFn "Angola i1s a country m Southwestern Africa " 0))
@ (linkFromTeoInSystem
(Link GrammarLinkFn "Ss") LinkCycParsngToken-9 Link CycParsingToken-68
thlinkParserLink 1 "Angola is a country in Southwestern Africa." 0))

Figure 2: Top: a Linkage produced by the Link parser for “Angola is a country
in Southwestern Africa.” Bottom: A CycL representation of that Linkage.

TextLearner reifies all three outputs, introducing new CycL terms for the tokenization,
individual tokens, the parse tree, and its nodes. Each token is associated with its string,
its corresponding node in the tree, and to other tokens as they are in the linkage, via CycL
predicates corresponding to Link parser links.

One reason for choosing the Link parser for use by TextLearner is that some links encode
a semantic relationship, making them strictly more informative than a standard parse tree,
and informative in an especially helpful way, as the semantic meanings of links can be
encoded as rules for interpreting text. As will be shown in section 4.4.3, some of this
semantic information proved useful in acquiring certain rules for semantically translating
new verb phrases into CycL.

-19-



Reading Learning G
Comprehension 3

Final Report
June 2006 CYC o rp

During much of its development, TextLeamner also called the Chamiak Parser
(http://www.cs.brown.edu/people/ec/#software), a broad coverage statistical parser for
English, freely available for research purposes. Due to the high performance costs
associated with forward inference triggered by the representation of parse trees, it was
eventually decided that TextLearner should use only one syntactic parser. Link was
chosen over Charniak because of the additional information it produces in the way of
linkages.

The explicit representation of tokenizations, linkages, and parse trees allows TextLearner
to identify semantically interesting classes of contextualized string-occurrences (e.g.,
noun phrases and verbs might be of interest) that can be detected by an analysis of the
tree. Some of string-occurrences of interest are detectible via a “surface” analysis of the
tree, by virtue of the tree containing an appropriately classified node (e.g., a noun phrase
node). In such cases, TextLearner can sometimes augment the parse tree with
information that is only implicit in the relationship of a given node to other parts of the
tree. For example, the following rule is used to strengthen the classification of a node
from a noun phrase to an appositive:

(implies

{and
(syntacticNodeCategory ?NODE NounPhrase)
(syntacticNodeString ?NODE ?NODE-STRING)
(syntacticNodeCategory ?HEAD NounPhrase)
(syntacticNodeNthDaughter ?NODE 2 ?HEAD)
(syntacticNodeString ?HEAD ?HEAD-STRING)
(syntacticNodeCategory ?MOD DefiniteNounPhrase)
{syntacticNodeNthDaughter ?NODE 1 ?MOD)
(syntacticNodeString ?MOD ?MOD-STRING)
(concatenateStrings ?NODE-STRING ?MOD-STRING " " ?HEAD-STRING))

(syntacticNodeCategory ?NODE Appositive))))

This rule would correctly identify “the cartoon character Dick Tracy” as an appositive on
the grounds that it is a noun phrase that consists of two noun phrases, the first of which,
“the cartoon character” is a definite phrase that modifies the second. Knowing that a

" node in a parse tree is an appositive is useful for purposes of content-extraction: in
general, one may conclude that the semantics of the head phrase (in this case, Dick
Tracy), is an instance of the type given by the modifier (cartoon character).

A declaratively represented parse tree also supports TextLearner in the identification of
string-occurrences of interest that are not reflected in the parse tree’s surface structure
(e.g., a tree might fail to contain a node for the appositive “the cartoon character Dick
Tracy,” despite having nodes for both “the cartoon character” and “Dick Tracy”;
TextLearner might then conjecture the existence of the appositive based the properties of
the two sibling nodes). Rather than correcting, or augmenting the tree in such cases,
TextLearner simply reifies the string-occurrence of interest, thereby “extracting” it, along
with any other string-occurrences of interest, from the tree, and placing it in the larger
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context model. This results in a secondary tree-like structure whose “nodes” (the various
reified occurrences of strings) serve as the focal points of interest as TextLearner
attempts to extract content from the input text.

4.3 Methods of Content Extraction

4.3.1 The Framework: Generating SIHMs

TextLearner uses a number of methods for assigning semantic interpretations to string
occurrences, or expression pegs. Before describing each in detail, a description of the
general framework by which such interpretations are added is warranted.

As noted above in 4.2, TextLearner uses the parse trees derived from linkages to find
string-occurrences of interest. These are reified as first-order objects in the context
model—expression pegs—and are related to the input sentence (itself represented as an
expression peg) uniquely by their string and character offset, and, where applicable, to
the corresponding node in the parse tree. When a candidate interpretation
INTERPRETATION for a reified expression peg PEG becomes available, TextLearner
forms an hypothesis using the predicate pegInterpretation-cycL, where

(pegInterpretation-CycL PEG INTERPRETATION)
means that INTERPRETATION is the correct semantic interpretation of PEG.

Every assertion in the Cyc Knowledge Base is grounded, or located in a microtheory,
which represents an internally consistent set of assertions—a context, so to speak—in
which it is true. Most assertions about expression pegs, such as assertions describing the
relationships they bear to particular strings, to nodes in a parse tree, and to each other, are
located in the context model for the relevant sentence. However, pegInterpretation-
cycL cannot be located there: The conjunction of any two pegInterpretation-CycL
assertions for the same expression peg constitute a contradiction—they are rival
hypotheses as to the correct meaning of a peg—so their co-location in a single context
model would violate the internal consistency of that model.

The solution to this problem is to generate a unique microtheory for each interpretation.
This has been implemented using a function, MtWwithFocalContentFn, that takes a
sentence and returns a microtheory whose “focal content™ just is an assertion of that
sentence. For example, the non-atomic term

(MtWithFocalContentFn (pegInterpretation-CyclL PEG INTERP))
represents the microtheory whose focal content is the hypothesis the correct intery retation

of the expression peg pec is INTERP. To prevent contradiction, each microtheory
generated this way is placed, via forward rules concluding to the genimt relation, in a
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“sibling” position, such that the contents of the relevant context model are visible to al,
but the content of each is invisible to all others.

These microtheories, called Semantic Interpretation Hypothesis Microtheories, or
SIHMSs, provide the added advantage of serving as first-order objects in the context
model. Unlike individual hypotheses (sentences), which are not (typically) reified and
thus are not “fixed” in a way that would easily allow one to add assertions about them,
microtheories are reified individuals in the Cyc KB, and so serve as a convenient “hook”
on which to hang the results of TextLearner’s analysis of competing interpretations.
Thus the rules used to “score” possible interpretations are actually written in a way that
scores them indirectly, cueing off of properties of the SIHMs that “embody” them.

4.3.2 Method I: Lexical Lookup

In addition to being a repository of common sense knowledge, the Cyc KB contains a
number of hand-crafted, language-specific lexicons consisting of word-units and
information about part of speech and morphology, as well as templates for translating
natural language into CycL expressions.

The simplest sort of translation template in the Cyc lexicon is a simple mapping of words
and parts-of-speech onto CycL terms. The predicate denotation is the most
fundamental of these. The sentence

(denotation Table-TheWord CountNoun 0 Table—PieceofFurniture)14
means that the word “table,” when used as a count noun, can map to the CycL term
Table-PieceOfFurniture, Cyc’s term for the collection of all tables. As the parse trees
used available to TextLearner contain both part of speech and string information,
TextLearner is able to query the lexicon for denotation and other, similar translation
templates, to find possible semantics for lexical (leaf) nodes. If, for example, a lexical
node NoDE for the string “table” was marked as singular (a number-feature only possible
for count nouns), TextLearner would look for count noun denotation entries for
whatever word had “table” as its singular form—i.e., Table-Thewora—and would find
Table-PieceOfFurniture listed as an appropriate possible interpretation. Lexical
ambiguity arises when a single word and part of speech pairing can map to multiple CycL
terms. For example, the existence of the additional assertion,

{denotation Table-TheWord CountNoun 1 Table-VisualCWw)

means that the word “table,” when used as a count noun, can also map to the CycL term
Table-visualcw, Cyc’s term for the collection of graphical tables, as one might see in an
earnings report or scientific study. Given the presence of both assertions in the Cyc

'“ The “0” is an artifact of an early attempt in the development in Cyc to uniquify word senses, and has no
real significance in this context.
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lexicon, TextLearner would construct two competing hypotheses as to the correct
interpretation of the occurrence of “table” in question.

The Cyc Lexicon is not comprehensive for English, so the opportunity arises for
TextLearner to 1) learn new words when it encounters a lexical node that does not
correspond to an English word with which it is familiar, and 2) learn new denotation
assertions for existing words where such assertions are lacking. In response to the first
sort of gap discovery, TextLeamer reifies a new word with the string and part of speech
features given by the parse tree. This effectively transforms situations of type 1) into
situations of type 2)—that is, having introduced a word to fill the type 1) gap,
TextLearner finds itself in a situation where it has the appropriate word, but some
denotation assertions are missing. TextLearner contains several techniques for positing
new possible denotations under these circumstances. In this section we discuss two: The
use of Noun Learner technology and a method of “reading” WordNet entries. A third
technique, the use of semantic closeness of known denotations for a given word and part
of speech to suggest new denotations for that same word and a different part of speech, is
more accurately characterized as a rule-acquisition technique, and so is discussed in
section 4.4, below.

Noun Learner

The Noun Learner is a technology developed under a previous Cyc project that uses a
verb/argument analysis of a corpus to learn new nouns. Given a new noun, say
“derivation,” the Noun Leamer would check the corpus to see what verbs it occurred as a
subject and what verbs it occurred as an object. For each “subject verb” found, the Noun
Learner would compile a list of nouns that occur in that corpus as a subject, doing the
analogous procedure for each “object verb.” Noun Leamer then attempts to map each
noun into Cyc, via an appeal to denotation assertions in the Cyc lexicon. The result is a
set of CycL concepts for which the Noun Learner attempts to find a close generalization
that covers, if not all concepts in the set, those with the greatest statistical frequency. The
end result is a small number of collections (typically one) that the system can suggest as a
defining genls for the new noun. Keeping with the “derivation” example, the Noun
Leamer’s analysis would suggest creationEvent, the collection of all events in which
something is created, as a defining genls for the collection of derivations. That is,
according to the Noun Learner analysis, a derivation is a type of creation event.

In the context of TextLearner, the appeal to Noun Learner unfolds in the following way:
Having encountered a lexical node for an occurrence of the count noun “derivation,”
TextLearner would appeal to the Cyc lexicon and find perive-Theword, for which
“derivation” was known to be the singular form, but for which there is no denotation.
TextLearner would then reify a new term Derivation, about which we know virtually
nothing, and add a gap-filling denotation to the Cyc KB:

(denotation Derive-TheWord CountNoun 0 Derivation)
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At the same time, it would query the Noun Learner via forward inference, giving it the
string ‘““derivation” as an input. Noun Learner would respond with creationEvent, as
described above, which TextLearner would use to generate the assertion

(genls Derivation CreationEvent)

which it places in a special Noun Learner “conjectures” microtheory for later review by a
trained ontologist."> In the meantime, TextLearner has added a semantic target for a
lexical node and can proceed analyzing the rest of the text.

WordNet

A second method for filling in lexical gaps involves having TextLearner “look up” a new
word in a dictionary (specifically, the online and freely available WordNet'®) and use the
information it finds there to define the new concept. Specifically, when encountering a
new noun a forward rule generates a query to the WordNet 2.1 database, the connection
brokered by a PostgreSQL server. This query returns a set of CycL terms, each of which
is arrived at by mapping into CycL each item in the synset and immediate hypernym lists
for that word."” As there will frequently be a one-to-many mapping from words in the
synset and hypernym lists to CycL terms, two measures are taken to select the most
appropriate CycL. The first is a syntactic measure: The part of speech information on the
new noun, which has been recorded as a property of the relevant node in the parse tree, is
used as a filter, so that if the new noun occurs as a count noun and a word (e.g., “fish”)
appears in the synset or hypernym list, only count noun interpretations will be considered
(so that rish, Cyc’s term for the collection of fish, will be returned and (MeatFn
EdibleFish) will not). The second is a semantic measure: All possible sets of
unambiguous interpretations of the synset and hypernym words are first generated and
compared as to how mutually similar the elements of those sets are. The set whose
members are the most similar is selected. Similarity is based on the ontology, and is
computed as the intersection of the number of generalizations of each element in the set
over the union of their generalizations, where a generalization of an element includes
every collection such that element is either an instance or specialization of that collection.
With these filters in place, TextLearner is able to extract a possible genls definition for
each new word that it encounters that is also found in WordNet. For example, if the noun
is “vacillator,” TextLearner will add a denotation to the lexicon,

(denotation Vacillator-TheWord CountNoun 0 Vacillator)

'* In the course of the Rapid Knowledge Formation program, Cyc has developed the ability to form
questions that can help guide an ontologist in fleshing out what “stub” concepts such as Derivation might
mean. For example, since axiomatically, every creation event stands in a outputsCreated relation to
something that is created, Cyc would form the question, “what kinds of things are created in a derivation?”
or (relationAllExists outputsCreated Derivation 7WHAT).

'® See http://www.cogsci.princeton.edu/~wr.

"" There will be many WordNet entries for a single word, each purportedly representing a distinct sense.
For the gap-filling strategy described here, TextLearner considers the first entry, which reflects the most
frequently used sense.
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and then query WordNet for the syntactically and semantically best set of CycL reflected
in the synset and hypernym lists for “vacillator.” In this case, as the WordNet synset for
which is “waverer, vacillator, hesitator, hesitater,” the query will return a set of CycL
terms that includes (FrequentPerformerFn Hesitating), the CycL term for
“hesitator.” As with the Noun Learner strategy, TextLearner responds by generating an
assertion

(genls Vacillator (FrequentPerformerFn Hesitating))

that it adds to a special “WordNet conjectures” microtheory for later review by a trained
ontologist. Because there is no guarantee that the WordNet and Noun Learner strategies
will yield mutually consistent results, the respective microtheories containing their
respective genls assertions do not stand in any sort of genlMt relationship, so that the
contents of the one are inaccessible from the other.

4.3.3 Method ll: Phrase Structure Parser

First developed under the Rapid Knowledge Formation project, the Cyc Phrase Structure
Parser (PSP) is a chart parser that takes a bottom-up approach to constructing semantics
for complex phrases. TextLearner calls the PSP as needed to generate SIHMs for phrase-
level pegs encountered while processing the input text. As with the assignment of
semantics to lexical nodes, this is done through forward rules. To make this possible,
vocabulary was developed for this project that would allow it to query Cyc for parser
ouput. Specifically, the arity-4 predicate

parserRunToSpecificationWithInputStringReturnsCyclification

allows one to identify a parser (such as the PSP), a specification as to how that parser
should be run, and an input string, and query the Cyc inference engine for the output
semantics. Additional vocabulary was developed to allow for easy, on-the-fly reification
of possible parser specifications. For the PSP, the specifications of interest were variants
of its default settings with respect to the part of speech (e.g., singular, infinitive, regular
degree, etc.) and phrase category (verb phrase, noun phrase, adjectival phrase, etc.)
parameters, the appropriate values for which are transparent from TextLearner's context
model.

(SpecificationvVariantFn
(DefaultParameterSpecificationFn CycPhraseStructureParser)
parserSpecificationPOSPredicate singular-Generic)

denotes the specification of the PSP that differs from the default in that the input string
will be parsed using singular-Generic as a setting.

Given this sort of representation, TextLearner is able to query the PSP using any of these
specifications as appropriate.
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4.3.4 Method lli: Anaphora Resolution

Anaphora resolution is the process of determining the antecedent of an expression, such
as a pronoun or definite noun phrase, whose meaning is dependent on the meaning of that
antecedent. Because TextLearner draws upon the Cyc Knowledge Base, it is in a position
to bring both syntactic and semantic considerations to bear in resolving anaphora.'® For
example, using syntactic methods, one can rule out “my brother” as the antecedent of
“they” on the grounds that that the former is singular while the latter is plural. However,
there are no syntactic grounds for ruling out “my brother” as the antecedent of “my
sister.” However, there are semantic grounds available: “my brother” must refer to the
speaker’s/author’s male sibling, and as no female is a male, it must be that “my brother”
is not the antecedent of “my sister.”

In TextLeamner, anaphora resolution proceeds by identifying candidate antecedents of
anaphoric expressions—pronouns and definite noun phrase—which results in the
generation of pegInterpretation-cycL SIHMs for those expressions. As information
comes in some candidate antecedents are removed, in a process of truth-maintenance
described above in section 3.1.2. The assignment of semantics to anaphoric pegs is
always linked to specific SIHMs for the antecedents. For example, consider a situation
where ANA is a reified expression for “the President,” and ANTE is an earlier reified
expression for “Bush.” ANTE might have two incompatible hypotheses

(pegInterpretation-CycL ANTE GeorgeWBush)

(pegInterpretationCycL ANTE Bush-Shrub)

only one of which—the first—licenses treating ANTE as an antecedent for ANA.
Specifically, ceorgewBush is an instance of presidentOoforganzation, the candidate
semantics of the reified peg for “President,” the head of the definite expression ANA,
whereas Bush-Shrub and PresidentOfOrganization are disjoint. So the decision to
conclude that ANTE is a candidate antecedent for ANA is done relative to a SIHM for
ANTE, allowing TextLearner to generate a single semantic hypothesis

(pegInterpretation-CycL ANA GeorgeWBush) .

This, in fact, reinforces the GeorgewBush interpretation of ANTE: One of the strategies
for scoring SIHMs involves rewarding an interpretation if the CycL. semantics it
promotes appear in multiple SIHMs corresponding to different strings. Bush-Shrub
appears as candidate semantics for n many pegs with a single string (“Bush’) whereas
GeorgewBush appears for those same pegs plus pegs determined to be other ways of

'® The methods of anaphora resolution implemented in TextLearner are an extension of the work started
described in Jon Curtis, G. Matthews, D. Baxter, “On the Effective Use of Cyc in a Question Answering
System” in Proceedings of the IJCAI Workshop on Knowledge and Reasoning for Answering Questions,
pp. 61-70, Edinburgh, Scotland, July 30, 2005.
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referring to him, such “George Bush,” “George W. Bush,” and, notably in this instance,
“the President.”

4.3.5 Method IV: Cyclifier

The cyclifier is a program designed to map Natural Language sentences into sentences of
CycL. Within TextLearner, the Cyclifier uses two methods. First, it calls a syrtactic
parser (the link parser) on the input sentence in order to obtain grammatical components
(e.g, the main verb, its subject and direct or indirect objects), and then accesses the Cyc
Lexicon for both word level templates (e.g., denotation assertions) and phrase level
templates known as semantic translation templates. Semantic translation templates
identify the CycL relations that relate the CycL denotations of the various grammatical
components. For example, the adjective semantic translation template,

(adjSemTrans Employ-TheWord 0 RegularAdjFrame
(employeeStatus :NOUN Employee) )

means that one can translate certain adjectival uses of “employed” into a sentence that
includes a clause relating the semantics of the modified noun to Employee via the relation
employeestatus. So “Bob is employed” would translate straightforwardly into
(employeeStatus Bob Employee) and a sentence that included the phrase “employed
person” would translate to a quantified CycL sentence that attributes to some variable
constrained to be an instance of Person, that the, e.g.,

(.. (and .. (isa ?PERSON Person) (employeeStatus ?PERSON Employee) ..)))

In addition to adjectives, The Cyclifier makes use of semantic translation templates for
nouns, verbs, adverbs, and prepositions. Verb semantic translation templates, which the
TextLearner system acquires as it encounters new verb constructions, will be described in
a bit more detail in Section 4.4.3 below, as part of the larger discussion of rule
acquisition.

The second method that the Cyclifier uses to generate sentence-level semantics is to use
sentence-level templates, often generated by hand, but more recently from example, that
map arbitrarily complex English to CycL sentences without making the same
assumptions about compositionality that lie behind the semantic translation template
method. The sentence-level template method allows one to effect compact, even partial
semantics of a class of sentences.

For example, one might wish to be able to extract from, “Those familiar with the Cyc
project will doubtless recognize the name Doug Lenat, its founder” to
(founderOfProject Lenat CycProject). The existence of a template that effectively
“eats up” the peripheral information about the audience (“those familiar ...””) or about the
speaker’s certainty (“‘doubtless”), would enable this extraction, where a series of phrase-
level semantic translation templates, unless it there were a template available for every
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phrase, could not. As will be seen below in the discussion of rule-acquisition,
TextLearner has some capabilities for generating such “partial” templates as it processes
text.

The Cyclifier is the last content extraction component called inside TextLearner, which
allows it to benefit from the addition of any new lexical entries (such as semantic
translation templates, denotations, or sentence-level templates) it acquires. Of special
interest is the way in which the Cyclifier is able to make use of anaphora resolution.
Because it operates by accessing the lexicon for word-to-CyclL mappings and uses its
own internal parse tree and tokenization to identify words and grammatical units, the
resolution of anaphora done at an earlier stage is not thereby automatically available.
That is, TextLearner’s resolution of some anaphoric expression (say, an expression peg
for “he”) to a given antecedent (say, an expression peg for “John Kerry”), results in an
assertion linking those two and a SIHM hypothesizing that the semantics for this
occurrence of “John Kerry” are those of this occurrence of “he.” This information isn’t
reflected anywhere in the Cyclifier’s internally-generated parse tree.

As the Cyclifier assigns semantics to the constituents of its internal tree by appealing to
the lexicon, the TextLearner makes the results of anaphora resolution available by
making temporary entries to the lexicon. For example, if an occurrence of “he” is
deemed to resolve to an earlier occurrence of “John Kerry” for which gohnkerry is the
semantics, TextLearner will add

(denotation He-TheWord PersonalPronoun 0 JohnKerry)

to the lexicon. When the Cyclifier then has an opportunity to parse the original sentence,
it has a semantic target for “he”—gohnkerry—readily available, that reflects the results
of the anaphora resolution. The entry is tagged as temporary (by being placed in a
“temporary” lexical microtheory) and is removed when TextLearner is done processing
the sentence, thereby preventing uses of that pronoun in later sentences from being
interpreted as referring to John Kerry unless anaphora resolution mechanisms license it.
Though far from a perfect solution—multiple, correct resolutions of the same pronoun
will result in unwanted ambiguity this way—it is a workable first approximation.

When the Cyclifier is finished, each interpretation it proposes is recorded as a SIHM,
along with all the phrase- and lexical-level interpretations.

4.4 Methods of Rule Acquisition

4.4.1 Lexical Gap-Filling Rules
In cases where the Cyc lexicon contains denotations for some, but not all, parts of speech

for a word, TextLearner can draw upon the semantic space surrounding a denotation to
find candidates to fill the gap. For example, Beer-Theword is known to have both a
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count noun form (“‘beer” and “beers”) and a mass noun form (“beer”), but the Cyc
lexicon only contains a single denotation handling only the mass noun case.

(denotation Beer-TheWord MassNoun 0 Beer)

This leaves a gap in the lexicon with respect to any count noun denotation for Beer-
Theword. In the context of TextLearner, this means that when considering an occurrence
of “beer” that has been identified with a lexical parse tree node marked as having mass
number, the lexicon will be unable to provide a possible semantic interpretation. an
attempt to fill this gap, TextLearner examines the relationship of Beer to other concepts
in the Cyc ontology, not only to fill this particular gap, but also to hypothesize rules that
can be used to fill similar gaps of that type (i.e., count noun gaps when a mass noun
denotation is known).

For example, Cyc knows the following salient fact about beer:
(servingTypeOfFoodOrDrinkType (FoodServingFn Beer) Beer).

This identifies (FoodServingFn Beer) as the collection of individual beer servings.
TextLearner then forms a general hypothesis to explain how the count noun denotation
gap of Beer-Theword might be filled: The relation servingTypeOfFoodOrDrinkType 1S
a lexical-extension relation, such that when a concept denoted by a mass noun appears in
the second argument, the other argument will contain a concept denoted by a count noun
version of that noun. This rule will forward-derive a new denotation for Beer - Thewora:

(denotation Beer-TheWord CountNoun 0 (FoodServingFn Beer))

as well as denotations for any other mass noun denotations for which a
servingTypeOfFoodOrDrinkType link is known, such as ‘“soda,” “pizza,” ‘“‘water,”
“spaghetti,” and the like. These rules are placed in a special microtheory for later review
by trained ontologists, but the denotation entries they generate are made immediately
available for TextLearner to use.

kAN 13

4.4.2 Noun Compound Rules

TextLearner's first step in interpreting a noun compound involves recognizing cases
where a parse-tree includes two adjacent nouns, the first of these having a non-plural
form (e.g. "noun compounds" or "Bantu word"). On the basis of such configuration, the
system concludes that the relation candidateNouncCompound holds between the first
node,—we'll call this the noun compound modifier—and the second node, the noun
compound head. This candidateNounCompound assertion, in turn, serves as a (partial)
basis for concluding a variety of other assertion' that are used to drive both noun-
compound interpretations and the hypothesizing of new noun compound rules.
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Noun Compound interpretation

When the system recognizes that the candidateNounCompound relation holds between
nodes in a tree, it determines whether the syntactic and semantic features of these nodes
are compatible with the syntactic and semantic constraints of noun compound rules
familiar to the system. On the basis of this determination, some number of
nounCompoundWithRule assertions will be generated via forward inference.
nounCompoundWithRule, a quintary (arity 5) predicate, relates the modifier and head
nodes, along with their relevant CycL interpretations, to whatever rules they happen to
satisfy.

For a noun compound like ‘“faculty investigation,” this process includes determining
whether any potential interpretations of “faculty” and “investigation” are consistent with
any known rules. In this case, we find that when the modifier is interpreted as
AcademicDepartment and the head as iInvestigation, these nodes satisfy the
constraints of courtRuling-NCR, a rule that can be used to relate specializations of
IntelligentAgent to specializations of Purposefulaction generally.

The actual assignment of a CycL interpretation is handled by the Phrase Structure Parser,
described in section 4.3.5, above.

Noun Compound Rule Hypotheses

The above-mentioned candidateNounCompound assertions also trigger attempts to derive
new (hypothesized) noun compound rules on the basis other (generally non-linguistic)
knowledge in the KB. Currently, TextLearner’s strategies for doing this capitalize on
knowledge that has been encoded using generalizations such as “every word is a word in
some language,” or, in CycL:

(relationAllExists wordInLanguage LexicalWord NaturalLanguage)

Using such assertions, TextLearner is able to hypothesize rules like:

(NCRuleWithTemplateFn
(TheList SubcocllectionOfwithRelationToFn)
(TheList TheNCHead genls LexicalWord) wordInLanguage
(TheList TheNCModifier isa NaturallLanguage)))

The first of these predicts that a noun that denotes a Natural Language (e.g “Bantu’) may
be followed by a noun which denotes a type of word (e.g. “word” or ‘“name”). It further
predicts that a compound which has this form will denote terms of the type specified by
the head which are also words of the language specified by the modifier. That is, when
TextLearner encounters a noun compound “Bantu word,” it will use this rule to interpret
it as possibly meaning the collection of words in the Bantu language, or
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(SubcollectionOfWithRelationToFn LexicalWord wordInLanguage
BantulLanguageSet)

4.4.3 Semantic Translation Templates

Semantic translation (sem-trans) templates are CycL sentences that give a recipe for
translating natural language phrases into CycL. These templates are used by cyclification
(NL-to-CycL) parsers, such as the PSP and the Cyclifier. The performance of these
parsers are thus to a large degree limited by issues of coverage: A particular semantic
translation template needed to handle a given use of a verb might be missing, leading the
parsers to produce partial or no results. Given that TextLearner calls upon the PSP and
Cyclifier to generate candidate semantic interpretations, its ability to extract information
from text will also be limited by coverage, making the acquisition of new templates part
of its “learning reading” mandate.

Some progress has been made in the area of acquiring new verb semantic translation
templates in response to encountering prepositional complements. Consider, for
example, the sentence

“The heart pumps blood to the lungs.”

The main verb of this sentence, “pumps,” has an entry in the Cyc Lexicon under pump-
Theword for which the following semantic translation templates are known:

Mt: GeneralEnglishMt
(verbSemTrans Pump-TheWord 1 TransitiveNPFrame
(and
(isa :ACTION PumpingFluid)
(providerOfMotiveForce :ACTION :SUBJECT)
(primaryObjectMoving :ACTION :0BJECT)))

(verbSemTrans Pump-TheWord 1 IntransitiveVerbFrame
(and
(isa :ACTION PumpingFluid)
(primaryObjectMoving :ACTION :SUBJECT)))

(verbSemTrans Pump-TheWord 0 TransitiveNPFrame
(and
(isa :ACTION Pumping-MakingSomethingAvailable)
(performedBy :ACTION :SUBJECT)
(objectActedOn :ACTION :OBJECT)))

This use of Pump-Theword is transitive (“The heart pumps blood ...”) and so there is
enough information in the TransitiveNPFrame translation template to cover the subject-
verb-object relationship; however, there is insufficient information to cover the
prepositional complement. In other words, the most complete translation Cyc can
generate using its lexical knowledge of pump-Theword is one that drops the PP
complement altogether:
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(thereExists ?HEART
(thereExists ?PUMPING
(thereExists ?BLOOD
(and
(isa ?HEART Heart)
(isa ?BLOOD Blood)
(isa ?PUMPING PumpingFluid)
(primaryObjectMoving ?PUMPING ?BLOOD)
(providerOfMotiveForce ?PUMPING ?HEART)))))

In other words, the cyclifier effectively parses the sentence as though it were “The heart
pumps blood.” To overcome this deficit, TextLearner does an analysis of the reified
linkage for this sentence, which shows that

1 “pumps” is the main verb with “blood” as its object
2 “to the lungs” is a prepositional complement, with “to” as the relevant preposition

1 gives enough information for TextLearner to know that the semantic translation
template for pump- Theword using the transitive NP comp frame is relevant. Thus is can
use that template as the basis for building a new template that will allow it to handle the
full verb phrase. 2 gives enough information for TextLearner to apply a common-sense
based heuristic for interpreting the PP complement. In particular, the Cyc lexicon
contains a mapping from English prepositions to ‘“underspecified” CycL predicates that
serve as semantic stubs for the interpretation of those prepositions. In this case, Cyc
knows that To-Theword maps to the predicate to-underspecifiedLocation. These
underspecified predicates are extremely general, living at the top of a vast predicate
hierarchy and have dozens (in some case hundreds) of specializations, each of which is a
possible interpretation for any given use of a preposition. Cyc's strategy for building a
new semantic translation template is to do a focused search, downward through the
hierarchy of predicates under to-underspecifiedlLocation to find the best possible
predicate.  To focus the search, Cyc applies commonsense knowledge about
PumpingFluid, a possible denotation for pump-Theword already known to be applicable
from the semantic translation template known to be relevant from 1.

pumpingFluid is the Cyc term for the collection of all fluid-pumping events. To find a
suitable role for “to,” Cyc looks for a specialization of to-UnderspecifiedLocation
that is the most-specific, required role for any fluid-pumping event. Since every fluid-
pumping event is a location-change event, i.e.,

(genls PumpingFluid Translocation)
and every location-change event has a location that is the “destination” of the object

moving in the event, the role toLocation is required for any fluid-pumping event. As
there are no more specific predicates in the to-UnderspecifiedLocation hierarchy that
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are also required, toLocation is selected. Thus Cyc combines the template for the
transitive frame for “pump”

(and
(isa :ACTION Pumping-MakingSomethingAvailable)
(performedBy :ACTION :SUBJECT)
(objectActedOn :ACTION :0BJECT)))

with a clause for handling the PP frame

(toLocation :ACTION :0BLIQUE-OBJECT)

to construct a new semantic translation template

Mt : GeneralEnglishMt
(verbSemTrans Pump-TheWord 311
(PPCompFrameFn DitransitivePPFrameType To-TheWord)
(and
(isa :ACTION PumpingFluid)
(providerOfMotiveForce :ACTION :SUBJECT)
(primaryObjectMoving :ACTION :0BJECT)
(toLocation :ACTION :0BLIQUEOBJECT)))

This template allows the cyclifier to produce a more complete parse, that covers all of the
components of the target sentence:

(thereExists ?PUMPING
(thereExists ?HEART
(thereExists ?BLOOD
(thereExists ?LUNGS
(and
(isa ?PUMPING PumpingFluid)
(isa ?HEART Heart)
(isa ?LUNGS Lung)
(isa ?BLOOD Blood)
(primaryObjectMoving ?PUMPING ?BLOOD)
(providerOfMotiveForce ?PUMPING ?HEART)
(toLocation ?PUMPING ?LUNGS))))))

Here's the full CycL for the rule used in this example:

(implies
(and

(underspecifiedPredicateForPreposition ?UND ?PREP)
(genlPreds ?PRED ?UND)
(requiredActorSlots ?TYPE ?PRED)
(termFormulas ?TYPE ?X)
({(LinkGrammarLinkFn "O") ?VL ?0L)
((LinkGrammarLinkFn "MV") ?VL ?PL)
(tokenString ?VL ?VSTRING)
(linkageTokenization ?LINKAGE ?TOKENIZATION)
(tokenString ?PL ?STRING)
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(tokenTokenization ?0L ?TOKENIZATION)
(wordForms ?WORD verbStrings ?VSTRING)
(ppCompFrameForTypeAndWord ?FRAME DitransitivePPFrameType ?PREP)
(wordForms ?PREP prepositionStrings ?STRING)
(argN ?ARG1l 1 ?X)
(argN ?ARG2 2 ?X)
(argN ?ARG3 3 ?X)
(unknownSentence
(thereExists ?BETTER
(and
(genlPreds ?BETTER ?PRED)
(different ?BETTER ?PRED)
(requiredActorSlots ?TYPE ?BETTER))))
(denotation ?WORD Verb ?M ?TYPE)
(verbSemTrans ?WORD ?N TransitiveNPFrame ?X)
(concatenateStrings ?NUM-STRING "3"
(IntegerToStringFn ?N)
(IntegerToStringFn ?M)))
(semTransExtractedFromStructure
(MakeFormulaFn verbSemTrans
(TheList ?WORD
(StringToIntegerFn ?NUM-STRING) ?FRAME
(MakeFormulaFn and
{TheList ?ARG1 ?ARG2 ?ARG3
(?PRED :ACTION :OBLIQUE-OBJECT))))) ?LINKAGE))

The stringToIntegerFn and IntegerToStringFn clauses are merely there to guarantee
a new sense number for the verbsemTrans rule to be constructed. Having concluded that
semTransExtractedFromStructure holds between the new template and the linkage
structure that was analyzed in order to produce it, a second rule concludes that
semTransExtractedFromStructure also holds between the template and the text from
which this linkage was built. Where the language of the input text is known, this gives
Cyc enough information to assert the template into the lexicon for that language:

(implies
(and
(languageHasRootLexicon ?LANGUAGE ?LEXICON)
(semTransExtractedFromStructure ?CYCL ?AS)
(structurePrimaryLanguage ?AS ?LANGUAGE))
{ist ?LEXICON ?CYCL))

4.4.4 EBMT Templates

As noted in section 4.3.5 above, one method by which Textlearner proposes semantics
for input sentences is through the application of sentence-level templates. Due to some
recent work in the area of Example-based Machine Translation (EBMT), Cyc is now able
to construct such templates by example, so that if a complete English-to-CycL. mapping is
presented, it can generalize the example into a template. EBMT traditionally has been
used to effect translations from one natural language to another, by comparing large

Er .



Reading Learning (Ly C
Comprehension S8

Final Report ,
June 2006 C YC O rp

parallel corpora in different languages.'”” In TextLearner, Cyc can acquire such templates
by identifying high-scoring sentence-level interpretations and submitting the original
English and the interpretation as a example mapping pair. Another method used is to
extract a conjunction of provable clauses from an interpretation, the result of which is a
high-scoring partial interpretation (high scoring because Cyc has proved it true), and
submit this constructed interpretation along with the original English as an EBMT
mapping example. For example, where the Cyclifier might return the following, partially
correct CycL for “Angola is a country in Africa that has a long history of violence.”

(thereExists ?STORY
(thereExists ?ANGOLA
(and
(isa ?ANGOLA Country)
(equals ?ANGOLA Angola)
(inRegion ?ANGOLAContinentOfAfrica)
(isa ?STORY HistoricalNarrative)
(duration ?STORY LongTime)
(topicOf ?STORY ViolentAction)
(hasRightsOver ?ANGOLA ?STORY))))

Though the translation of the entire sentence is unsatisfactory—it claims that there is
some story about violence that Angola has rights over—there are parts of it, namely that
Angola is a country and Angola is in Africa that are correct, because Cyc can prove both
literals given its existing knowledge of geopolitics. TextLearner in this case would pull
both literals out and combine them, proposing this partial mapping that can be used as an
EBMT template:

(thereExists ?ANGOLA
(and
(isa ?ANGOLA Country)
(equals ?ANGOLA Angola)
(inRegion ?ANGOLA ContinentOfAfrica)))

The EBMT code then would generalize the mapping into a template for rapidly
interpreting sentences of the form “COUNTRY is a TYPE in REGION that ...” which
would be sufficient from extracting at least the type and location of a geopolitical entity,
even if the relative clause cannot be understood.

4.5 Knowledge Finalization

TextLearner’s knowledge-acquisition “target”—content extracted from documents and
rules for enabling better content extraction—make up only a small fraction of the data
TextLearner generates. For a single sentence, TextLearner can generate thousands of
assertions, most of which—assertions about tokenizations, linkages, trees, and
expression-pegs, in particular—are of little benefit to TextLearner apart from the support
they provide during specific, one-time content extraction and rule acquisition events.

I See, for example, http://www-2.cs.cmu.edu/afs/cs.cmu.edu/user/ralf/pub/WWW/ebmt/ebmt.html, Ralf
Brown'’s research page.
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Moreover to include all of this data into the Cyc KB permanently would unnecessarily
bloat its size. Thus, after each sentence it processes, TextLearner executes a knowledge
finalization script, where the “wheat is separated from the chaffe” so-to-speak, so that a
file containing all and only the useful “target” content is generated and included in Cyc
permanently.

After this finalization step is complete, TextL.earner performs a “distillation” process,
whereby the results of disambiguation can be recorded without requiring that the weighty
infrastructure used to generate those results be maintained or transmitted to the full Cyc
KB. Specifically, queries are run that produce assertions associating strings, offsets,
CycL semantics, and TextLearner’s score for every expression-peg (including sentences)
for which a possible interpretation was generated. As this process is performed after each
sentence, the scoring process is also re-performed, enabling the TextLearner to update its
“opinion” as to the correct interpretations of previous sentences, words, and phrases, in
response to having processed subsequent sentences. This distillation process also
involves generating a similar record of extracted presuppositions and their scores. The
net result of the distillation process is a detailed semantic annotation of the document,
which can be used by other applications for question-answering or information retrieval.

The TextLearner knowledge finalization process has been represented in the KB as a
script, FinalizingkKnowledgeAcquiredByTextLearner. This allows TextLearner to
query for the scenes of the script, in order, allowing it to retrieve the queries and the order
to run them in. This also makes the finalization process something that can be modified in
the Knowlege Base.

5 Technical Results

5.1 Disambiguation Experiment

A significant challenge to any autonomous reading system is correctly identifying the
referents of ambiguous words and phrases, and assigning confidences to such
identifications. Early and reliable identification of the concepts referred to in the
document being read allows the system to draw stronger conclusions about what is being
said about them, and also allows it to avoid an explosive amount of unnecessary extra
work entertaining competing hypotheses. For instance, if a sentence contains two
ambiguous expressions with three possible interpretations apiece, the number of possible
interpretations of the sentence is nine times what it would be if the referent of each of
those two expressions were identified with high enough confidence to ignore the other
possible referents.

To improve our system’s ability to reduce lexical ambiguity, we selected a set of four
Wikipedia articles on diverse topics—Angola, Thomas Jefferson, backgammon, and
biology—identified the words that our lexicon treated as ambiguous, and devised a
number of strategies to reward certain interpretations over others. The strategies made
heavy use of the Cyc ontology to reward interpretations using two semantic criteria:
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semantic closeness and semantic contribution. Semantic closeness strategies reward pairs
of hypothesis (SIHMs) when the CycL interpretations they posit stand in any number of
specified relationships in the Cyc knowledge base. For instance, interpretations of a set
of nearby words that are all instances of the same collection would be rewarded this way.
Other semantic closeness strategies rewarded interpretations of expressions as instances
of collections denoted by nearby expressions, or as denoting related concepts, such as a
collection of things or people and a collection of events they are known to be capable of
performing.

Augmenting this sort of disambiguation procedure, semantic contribution strategies
reward an interpretation when it literally occurs inside a semantic interpretation of an
expression that subsumes the expression-peg in question. For example, the word “book”
is ambiguous between an authored work (as in, “I’ve read all her books”) and a book
copy (“The book [ borrowed is on the table.””). However, in the context of the phrase,
“worn book,” only one interpretation is possible—the physical book copy, which, unlike
a conceptual work, can undergo wear and tear. In text learner, this would mean
rewarding the book copy interpretation—BookCopy—on the grounds that there is an
interpretation for “worn book”- (SubcollectionOfWithRelationToFn BookCopy
physicalStructuralFeatures Worn)—in which BookCopy appears.

We parameterized all these strategies, and ran a hill-climbing algorithm to optimize the
parameter values for best performance on our test documents. The strategies, parameters,
and optimized values are all stored in the knowledge base, and can be modified or added
to on the basis of future efforts, ideally by the autonomous operation of the system itself.
The results of this experiment are published in Curtis, ef a/, “On the Application of the
Cyc Ontology to Word Sense Disambiguation,” Proceedings, FLAIRS 2006, 652-657.

The below chart summarizes the results of the disambiguation experiment. Among the
four articles processed, the average number of candidate possible CycL interpretations for
an ambiguous word was 3. Just over 71% of the time the correct concept was included in
the set of candidate denotations. Left to chance, disambiguation could be performed
correctly across the whole corpus 33.49% of the timme; however, the TextLearmner method
for disambiguation performed correctly 56.61% of the time. This reflects a 69.04%
improvement over chance.

) 0
“Angola” 2.96 82.67% | 33.83% | 53.64% | 58.56%
“Backgammon” | 3.29 61.80% | 30.43% | 53.80% | 76.80%
“Biology” 2.62 79.21% | 38.20% | 68.85% | 80.23%
“Jefterson” 2.99 73.66% | 33.40% | 53.23% | 59.37%
Cumulative 3.00 71.52% | 33.49% | 56.61% | 69.04%
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5.2 Rate of Acquisition Experiment

Near the end of the Reading Learning Comprehension project, a second experiment was
set up to gather data about TextLearner’s rate of acquisition of new concepts and rules.
To this end, Text Learner was “fed” the complete text of the Wikipedia article
“Chemistry,™® which contains 97 sentences, with the goal of determining a per sentence
rate of new concept and rule extractions.

Several technical difficulties (including a company-wide hardware changeover) resulted
in multiple re-starts. This delay was compounded by general forward-inference
slowness, which was itself compounded by a “snowball” effect, in which forward
inference slows as the number of context models—one for each sentence, each containing
thousands of new assertions—increases. At the time of writing this report, TextLearner
had finished processing three paragraphs, a total of 11 sentences, from which 7 new
concepts and 1 new word (but, surprisingly, no rules) had been extracted. This rate of .64
extractions per sentence appears promising, but cannot be viewed as a true reflection of
TextLearner’s acquisition capabilities, given the small sample size. The processing of the
“Chemistry” article continues, however, as will a general (i.e., not-specific to this project)
investigation into how Cyc-based applications can be insulated against this forward
inference slowness “snowballing.”

6 Findings and Conclusions

At present, TextLearner’s ability to generate higher quality interpretations than previous
NL-to-CycL transformation technologies is mostly evident in how it performs against the
numerous use- and test-cases that were used to drive its development. The slowness of
the system, as noted in the discussion of the “Chemistry” experiment, has been the
biggest obstacle to gathering large amounts of data as to TextLearner’s capabilities.
Nevertheless, TextLearner has been deployed at Cycorp as a sort of “junior ontologist,”
where we expect that, with occasional monitoring, it will succeed in steadily (albeit
slowly) working through online articles, extracting new facts and rules, and submitting
the distilled results of its processing for inclusion in a full Cyc build. If later
opportunities to work on this technology present themselves, a first order of priority will
be to find ways to speed up aspects of the system, using both time-tested techniques (such
as replacing theorem-proving steps with efficient “heuristic-level” reasoning modules)
and techniques new to Cycorp, such as parallelism. Some aspects of TextLearner, such
as certain rule-acquisition techniques, might be extracted as separate components, and
run, real-time, alongside TextLearner rather than inside it, thereby reducing the work that
TextLearner needs to do and consequently increasing its speed. (This has, in fact, been
done already with the noun compound rule-learning technology.) The prospects for
making a version of TextLearner that can run faster and more efficiently are, we believe,
good.

= http://en.wikipedia.org/wiki/Chemistry
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7  Significant Development

In previous sections of this report, a number of significant developments have been
identified:

a Method for representing the structure of text and html documents

improved KB-driven methods for speeding up forward inference for applications

a method of producing semantically rich text annotation, in the form of assertions
that associate sentence-, phrase-, and word-level string occurrences with their
possible CycL interpretations and a score weighing those interpretations

methods for augmenting the results of syntactic parsing

methods of acquiring rules for semantic interpretation

methods resolving some kinds of anaphora

methods of extracting some kinds of presuppositions

An additional significant development of this work has not yet been discussed, primarily
due to the fact that it is a method of learning valuable information that, though
TextLearner benefits from it, is not run as part of TextLearner’s text-processing routines.
Specifically, the Reading Learning Comprehension project has resulted in a method for
weighing, or valuing noun compound rules in terms of semantic focus. For our purposes,
a rule is more or less focused semantically to the degree that the actual noun compounds
it covers are actual meaningful, relatively frequently used noun compounds of the
relevant natural language (in this case English). To measure this property, rules were
“run forward” so as to generate actual noun compound instances from the rule, following
this procedure:

i

Find all strings which Cyc recognizes as satisfying the modifier syntactic and
semantic constraints for the rule.

For example, if the rule responsible for generating “egg salad” requires that the
modifier be a noun or phrase with a noun head that denotes any specialization of
Ediblestuff, the Cyc term for the collection of all edibles, we would generate
strings such as ‘beef,” “tomato” and “salmon.”

Find all strings which Cyc recognizes as satisfying the head syntactic and
semantic constraints for the rule.

For example, if the same “egg salad’’ rule requires the head to be a noun
denoting any specialization of FoodComposite—the Cyc term for the collection of
all food “‘composites” (food dishes or items that require a combination of

ingredients)—we would generate strings such as “stew,” “soup” and “tofu.”

Randomly select M of these and pair them together as candidate compounds.
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For example, “beef stew,” “tomato soup,” “salmon tofu.”
4. Use the rule to parse these combinations into the semantics given by the rule.

For example, parsing “beef stew” as
{(SubcollectionOfWithRelationToTypeFn Stew ingredients Beef), or the
collection of instances of stew that have beef as an ingredient.

5. Filter out candidates whose semantics are recognized as violating the argument
and inter-argument constraints (Cyc’s semantic meaningfulness constraints) for
the semantic relation.

For example, rejecting “salmon tofu” on the grounds that no instance of
VegetarianCuisine, of which Tofu is a specialization, can have any Meat (of
which salmon is a specialization) among its ingredients.

With this list, we:

1. generate a list of N candidate compounds,

check Yahoo! for the number of hits for the compound string, modifier string, and

head string,

store test data for a rule in a file hash table

4. access this test data in the KB via removal support for the CycL predicate
#sdatedCandidateNCTestHasResults.

(5]

For purposes of scoring the originating noun compound rule, if the number of hits for the
modifier or head is too low, the compound is treated as an outlier, and its number of hits
neither counts for nor against the score of the originating rule. However, if head and
modifier hits meet or exceed a threshold, the number of hits for the compound is
considered: All such numbers are added and divided by the number of remaining
compounds for a “semantic focus” score. The scores are used by TextLearner in the
disambiguation of noun compounds. Appendix A of this report gives a table of these
rules with their scores.

This procedure is vulnerable to rewarding a rule incorrectly by virtue of failing to detect
false positives. Specifically, the semantics of the rule is not being tested directly, so that
a rule that meaningfully, but incorrectly parses a commonly-occurring noun compound
will be rewarded by virtue of that compound receiving a high number of hits. Consider,
for example, an “elephant ivory” rule that parses the compound into the subcollection of
the head semantics that are “derived from™ an instance of the modifier semantics. This
rule will succeed in parsing “dog biscuit” as the collection of biscuits derived from dogs,
and since “dog biscuit” receives many Yahoo! hits, the rule will be rewarded.

To guard against this problem, a method of finding such false positives has been
implemented as part of the online “teach Cyc” web-game. The web-game submits for
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confirmation or discomfirmation, statements, in English, to online users who wish to
teach Cyc whether a putative fact that it has been considering is true or false. For
example, knowing that a tractor is a type of wheeled vehicle, and that most wheeled
vehicles it knows of have brakes, it formulates the hypothesis, “every tractor has some
brake as a proper physical part” which a human user can validate or repudiate. In order
to catch false positives for noun compound rules, it generates hypotheses to the effect that
the semantics provided by a rule for a high-scoring noun compound are correct. For
example the web game would submit “a dog biscuit is a biscuit derived from dogs” for
confirmation or discomfirmation. Consensus discomfirmation causes a forward rule to
fire and record “dog biscuit(s)”” as an counter-example for the rule. TextLearner looks for
such counter-example “tags” and thus ignores that rules precision score, effectively
assigning it a zero. Consensus confirmation, given the high-hit count of the noun
compound in question, is treated as evidence that the compound deserves lexicalization:
The semantic interpretation generated by the rule is reified (represented explicitly as a
first-order term in the Cyc knowledge base) and associated with the compound in the Cyc
lexicon.

8 Implications for Further Research

The ability to use the “teach Cyc” web-game to identify counter-examples to noun
compound rules suggests the promise of using human consensus to validate or repudiate
other pieces of knowledge that TextLearner acquires, reducing the need for manual
review by an ontologist. For example, the Noun Leamer- and WordNet-based methods
for acquiring definitions of new concepts frequently generate conflicting results.
However, since TextLearner keeps a record of the context where these new concepts
were encountered, there is enough information to generate a meaningful “multiple
choice”-style question asking which meaning (if any) of a word as it occurs in a
particular sentence (or paragraph) is correct. A worthwhile research project would be to
test the effectiveness of this method on not only noun compound rules and hypothesized
definitions, but on any knowledge acquisition method, such as learning semantic
translation templates, currently used in TextLearner.

Another promising area for future machine learning research is to determine the degree to
which TextLearer can refine its existing disambiguation strategies on its own, or even
learn new strategies. Many of the disambiguation strategies currently implemented in
TextLearner involve rewarding pairs of interpretations of different expression pegs when
those interpretations share a nearest isa to a collection of a specified type. For example,
if a sentence or paragraph contain both the words “gold” and “oil,” which in Cyc are
ambiguous between Goldcolor and Gold in the first case and crudeoil and
vegetableoil in the second, will reward Gold and crudeoil on the grounds that they
share a nearest isa of NaturalResourceType—which is distinguished from other
collections that any of the competing interpretations might be nearest instances of due to
its being an instance of clarifyingCollectionType, a collection (specifically, the
collection of all collections that are salient for distinguishing concepts) that is “targeted”
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by a specific TextLearner disambiguation strategy. A worthwhile experiment would be
to test whether Cyc could discover collections, such as clarifyingCollectionType and
others not already identified by ontologists, that are useful for disambiguation.
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Appendix A

Below are the results of a query that retrieves the semantic focus scores of Cyc’s existing

noun compound rules. Note that rules with a compositional syntax formed from
NCRuleWithTemplateFn are derived from TextLearner’s rules for generating noun
compound rules in response to encountering unfamiliar compounds.

Mt : (MtSpace CurrentWorldDataCollectorMt-NonHomocentric (MtTimeDimFn
Now) )
EL Query :
(thereExists ?RESULT
(and

(aggregateCNCResultForRuleWithThresholds ?RULE 10 1000 ?RESULT
Yahoo-SearchEngine)
(evaluate ?SCORE

(NthInListFn ?RESULT 2))))

Status : Suspended, Exhaust Total

{(TheList SubcollectionOfWithRelationFromFn
(TheList TheNCHead genls IDString)
identificationStrings
(TheList TheNCModifier isa Thing)))

Show Hide Answers (127 new) Actions : [Save Answers] [Graph

Answers]

K?RULE i?SCORE

MilkTruck-NCR 0.04954954954954955

DLAForwardLAN-NCR 0.052

(RelationalNCRuleFn costars 2 0.04
(WordWithPrefixFn Co_Denominal-ThePrefix Star-TheWord))

'(RelationalNCRulan properParts 2 Section-TheWord) i0.4362934362934363

(NCRuleWithTemplateFn 0.10326086956521739

lHarpDepot—NCR Jo.13333333333333333 |
lshoeFactory—NCR Jo.20603015075376885 |
(RelationalNCRuleFn-InstancelLevel altitudeAboveGround 2 0.04819277108433735

Altitude-TheWord)

(RelationalNCRuleFn guestAtSocialGathering 2 Guest- 0.7423312883435583
TheWord)

(RelationalNCRuleFn-InstanceLevel recruiterForOrg 2 0.06319702602230483
Recruit-TheWord)

I(RelationalNCRulan annualPercentageRate 2 APR-TheWord) l0.31343283582089554 I
[(RelationalNCRuleFn subsetOf 2 Superset-TheWord) Jo.03137254901960784 l
(RelationalNCRulan'temperatureofobject 2 Temperature- 0.25547445255474455

TheWord)
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=

[XirlineExecutive—NCR

44]0.1660377358490566 I

L

|TicketSa1es—NCR

Io.1243243243243243§4]

(RelationalNCRuleFn-InstancelLevel properParts 2 Section-
TheWord)

025

(RelationalNCRuleFn-InstancelLevel eventPlannedBy 2 Plan-
TheWord)

TheEmptyList

(RelationalNCRuleFn
(PresentTenseVersionFn transportees)
TheWord)

2 Transportee-

TheEmptyList I

[skiingability-NCRr

Jo.1917808219178082 I

[BusTerminal-ncr

Io.0585585585585585§:]

[ﬁlephantlvoryz—NCR

|0.12598425196850394 l

(RelationalNCRuleFn-InstanceLevel subsetOf 2 Superset-
TheWord)

0.02527075812274368

[1nfectedanimals-Ncr

Jo.06093189964157706 '

|E1ectionDay-NCR

Jo.15217391304347827 I

=

|(RelationalNCRu1an chosenItem 2 Pick-TheWord)

|o.6666666666666666 J

—

(NCRuleWithTemplateFn
(TheList SubcollectionOfwWwithRelationToFn
(TheList TheNCHead genls Situation)
situationConstituents
(TheList TheNCModifier isa Individual)))

0.07575757575757576

[cunLaw-NCr 44]0.06607929515418502 ]
|CycorpStaffMember—NCR 4]0.0390625 l

3

{(NCRuleWithTemplateFn
(TheList SubcollectionOfwithRelationToTypeFn
(TheList TheNCHead genls Situation-Localized)
situationLocation
(TheList TheNCModifier genls EnduringThing-
Localized)))

0.13908872901678657 |

(NCRuleWithTemplateFn
(TheList SubcollectionOfWithRelationToTypeFn
(TheList TheNCHead genls Situation-Localized)
situationConstituents
(TheList TheNCModifier genls SpatialThing-
Localized)))

0.16951788491446346

[PartyGame—NCR

i

Jo 0s6

—F

IBasketballEquipment—NCR

Jo.21010569105691057

Il

I(RelationalNCRulan layers 2 Layer-TheWord)

| TheEmpryList

_

—

[FleetSupport—NCR

l0.6666666666666666 l

(RelationalNCRuleFn stepfather 2
(WordWithPrefixFn Step-ThePrefix Father-TheWord))

0.02491103202846975
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I(RelationalNCRulan isLeaderof 1 Leader-TheWord) Jo.4714285714285714
[TourEvents-NCR Jo.6885813148788927

I(RelationalNCRulan wasTheKillerOf 2 Kill-TheWord)

|
|
.31835205992509363 l
|

[AnthraxExposure-NCR Jo.4956521739130435
(NCRuleWithTemplateFn 0.13559322033898305
(TheList SubcollectionOfWithRelationToTypeFn
(TheList TheNCHead genls BilateralObject)
objectSides
(TheList TheNCModifier genls SpatialThing-
Localized)))
|AnthraxBacillus—NCR |0.5 I
lNutritionConsultant—NCR IO.S l
| (RelationalNCRuleFn- InstanceLevel goals 2 Goal-TheWord) Jo.2131782945736434 l
(NCRuleWithTemplateFn 0.12735849056603774
(TheList SubcollectionOfWithRelationFromTypeFn
(TheList TheNCHead genls IDString)
identificationStrings
(TheList TheNCModifier genls Thing)))
|countrysideLifeseeing-NCR Jo.23550724637681159 l
|TelanganarashtrasamitiLeader-NCRule Jo.20437956204379562 l
(NCRuleWithTemplateFn 0.5588235294117647
(TheList SubcollectionOfWithRelationToTypeFn
(TheList TheNCHead genls EventSeries) seriesMembers
(TheList TheNCModifier genls Event)))
(NCRuleWithTemplateFn 0.05247376311844078
{(TheList SubcollectionOfwithRelationToFn
(TheList TheNCHead genls LexicalWord)
wordInLanguage
(TheList TheNCModifier isa NaturalLanguage)))
|TourLandmarks - NCR |- l
I(RelationalNCRulan dividendPerShare 2 Dividend-TheWord) 1 '
(NCRuleWithTemplateFn 0:.17727272727272728
(TheList SubcollectionOfwithRelationToTypeFn
(TheList TheNCHead genls GeneralizedTransfer)
terminalOfTrans-Generic
(TheList TheNCModifier genls Individual)))
[(RelationalNCRuleFn boardMembers 2 Director-TheWord) Jo.4681647940074906 l
I(RelationalNCRulan beneficiary 2 Benefit-TheWord) I0.17454545454545456 I
[PumpkinpPatch-NCR Jo.2593856655290102 I
RiverRafting-NCR Jo.21299638989169675 I
(RelationalNCRuleFn-Instancelevel teacherOf 2 Teach- 0,3333333333333333
TheWord)
Jo.32081911262798635 l

IBloodSample—NCR
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|RailTravel—NCR

IO.30837004405286345i]

(RelationalNCRuleFn mySentientUserProfile 2 Profile-
TheWord)

0.398576512455516

(RelationalNCRuleFn-Instancelevel isLedBy 2 Leader-
TheWord)

0.14691943127962084

(NCRuleWithTemplateFn
(TheList SubcollectionOfWithRelationToTypeFn
(TheList TheNCHead genls LinkingTogether)
linkedThing
(TheList TheNCModifier genls Thing)))

0.26666666666666666

AnthraxOutbreak-NCR

Jo.16806722689075632 l

(RelationalNCRuleFn-InstanceLevel claims 2 Claim-TheWord) IO.268 I

—

|LogisticsCompany—NCR

44]6?69375 4J

—

|(Re1ationalNCRu1an isLeaderOf 2 Follow-TheWord)

IO.16363636363636364 ]

(NCRulewWwithTemplateFn
(TheList SubcollectionOfWithRelationToTypeFn
(TheList TheNCHead genls Situation)
situationConstituents
(TheList TheNCModifier genls Individual)))

0.12442396313364056

lPoliceVehicle—NCR

Jo. 11885245901639344]

IPollingStation—NCR

|o .21739130434782608 l

[EasterDaughter—NcR

!0.5 4]

(RelationalNCRuleFn halfBrothers 2 Half-Brother-MWW)

Jo.04460966542750929 l

|
|

LandscapeContractor-NCR

|o .2078853046594982 I

ﬂielationalNCRulan denies 2 Deny-TheWord)

IO.16370106761565836 I

(NCRuleWwithTemplateFn
(TheList SubcollectionOfWithRelationFromTypeFn
(TheList TheNCHead genls
(SubcollectionOfwWithRelationFromTypeFn
Individual parts Individual)) parts
(TheList TheNCModifier genls Individual)))

0.140625

|SoftwareEncryption—NCR

|o ; 17391304347826086J

|(RelationalNCRulan employees 1 Employ-TheWord)

Jo .23674911660777384 |

(RelationalNCRuleFn-InstancelLevel subsetOf 1 Subset-
TheWord)

0.07063197026022305

(RelationalNCRuleFn intelligenceOperativeForOrg 2 Spy-
TheWord)

0.11026615969581749

|Toqutew—NCR

"Io .3586206896551724 '

|WaterSolution—NCR

|o.44594594594594594J

(NCRuleWithTemplateFn
(TheList SubcollectionOfwithRelationToTypeFn
(TheList TheNCHead aenls Series) seriesMembers

0.09734513274336283

A7



Reading Learning =
Comprehension ('-v

Final Report CY cor p

June 2006
I {(TheList TheNCModifier genls TemporalThing))) ” ‘
iChristianSchool—NCR i0.32867132867132864 l
i}RelationalNCRulan income 2 Earnings-TheWord) i0.1795774647887324
iChainSawPrices—NCR i0.6886446886446886 l
[DriedYams—NCR i0.017605633802816902i
iCountryBoy—NCR i0.475 i
(RelationalNCRuleFn-InstanceLevel temperatureOfObject 2 0.11023622047244094
Temperature-TheWord)

(RelationalNCRuleFn-InstanceLevel mySentientUserProfile 2 0.2648221343873518
Profile-TheWord)
iLeatherPants—NCR i0.12 I
iBOOkCOpieS—NCR i0.5609756097560976 I
(RelationalNCRuleFn-Instancelevel isLeaderOf 1 Leader- 0.10572687224669604

TheWord)

|(Re1ationa1NCRulan rumorAbout 2 Rumor-TheWord)

.21660649819494585 ]

[USSenateTestimony—NCR

.4016393442622951 |

[Egssportphotograph—NCR

.245136186770428 |

=

—

(RelationalNCRuleFn 0.11219512195121951
(PresentTenseVersionFn transporter) 2 Transport-

TheWord)

ﬁmthraxVaccination-NCR IO.24519230769230768 |
(NCRuleWithTemplateFn 0.19736842105263158

(TheList SubcollectionOfWwithRelationToTypeFn
(TheList TheNCHead genls Thinking)
objectOfMentalSituation
(TheList TheNCModifier genls SomethingExisting)))

[Home PhoneNumber -NCR 0.5178571428571429 |
[usarmymajors-NCR 0.06439393939393939 |
IRenaissanceArtwork—NCR |0.3076923076923077
|(Relationa1NCRu1an associates 1 Associate-TheWord) Jo.24731182795698925
[skincontact-NcRr Jo.2627986348122867 |
(RelationalNCRuleFn intelligenceOperativeForOrg 2 0.21897810218978103
Operative-TheWord)

l(RelationalNCRulan—InstanceLevel cost 2 Cost-TheWord) Jo.14112903225806453
Elephant Ivoryl-NCR Jo.04975124378109453 |
|[starbucksFranchise-NCR |0.043478260869565216|
[DefenseDepartmentFacility-NCR Jo.10861423220973783

Jo.04201680672268908

|ChicagoBusinessman—NCR
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(NCRuleWithTemplateFn 0.06818181818181818
(TheList SubcollectionOfWithRelationToFn
(TheList TheNCHead genls
PartiallyIntangibleIndividual) intangibleParts
(TheList TheNCModifier isa IntangibleIndividual)))
(RelationalNCRuleFn supervisesInAction 1 Supervise- 0.3107142857142857
TheWord)
[courtruling-NCr Jo.10227272727272728 |

I

I(RelationalNCRulan~InstanceLevel rivals 2 Rival-TheWord)

t

v

09523809523809523 ]

[skinrash-NCR Jo.3278008208755187 |
I(RelationalNCRulan shareholders 2 Stockholder-TheWord) |0.25 r
| (RelationalNCRuleFn suppliers 2 Supply-TheWord) Jo.2426470588235294 |
[PublicBus-Ncr Jo.s218181818181818
|canadianNavyManual-Ncr Jo.07851239669421488 |
[kRelationalNCRulan subsetOf 1 Subset-TheWord) IO.24124513618677043
(RelationalNCRuleFn-InstanceLevel TheEmptyList
(InverseBinaryPredicateFn arrests) 1 Arrestee-TheWord)

[skincondition-NCR Jo.13043478260869565 |
[(RelationalNCRulan downtownOf 2 Downtown-TheWord) 0.5 J
(NCRuleWithTemplateFn 0.13106796116504854

(TheList SubcollectionOfWithRelationToTypeFn
(TheList TheNCHead genls PhysicalSituation)
situationConstituents
(TheList TheNCModifier genls PartiallyTangible)))
(RelationalNCRuleFn accomplices 2 Accomplice-TheWord) I0.07037037037037037
|(Re1ationa1NCRu1an chosenItem 2 Select-TheWord) ]b‘6538461538461539
IExposedMonkeys—NCR I0.04678362573099415

|BathroomEquipment—NCR

.5061728395061729 |

lIRAMembers—NCR

.2765151515151515 4]

[MapleLeat-NCR

.091324200913242

]

-
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